時間反転な系特有のクラマース縮退は4元数(Quaternion)により自然に記述されます。[Y. Hatsugai in Focus issue in topological insulators :NJP] [論文直接]
一般に波動関数の位相の不定性はベリー接続に U(1) のゲージ構造をあたえますが、クラマース縮退のある場合、それはSp(1)ゲージ構造となります。また、ベリー接続の特異点を与える偶然縮退は一般にはDirac単磁極を与えますが、時間反転不変な場合、この特異点はYang のSU(2)単磁極となります。この例のように Sp(1)=SU(2)の同値性に基づくと時間反転不変な系でのベリー接続はSU(2)ゲージ理論の一つの実現をあたえることとなります。
ここで通常の複素数を四元数(Quertenion)に読み替えることにより、時間反転を持たない場合と持つ場合がアナロジーを越えてマップとして自然に読み替えられることとなります。ベリー接続のゲージ固定条件を考えることにより、非自明かつ自然な次元は複素数、四元数の基底の数により規定され、それぞれ2次元、4次元となります。対応して位相不変量はそれぞれ、2次元、4次元球面上の第1,第2チャーン数であたえられ、その量子化は1つ次元が下の赤道上、1次元閉曲線上の回転数、3次元球面上のポントリャーギン数の量子化に帰着しますが、これは特定のゲージ固定のもとでの球面上の特異点とみることもできます。この特異点は、自然な次元から1つ次元をあげた、それぞれ3次元、5次元のなかで一般化したDirac stringとなり、その終点がDiracおよびYang 単磁極となるのです。これら2次元、4次元球面上の赤道はカイラル対称な部分空間として特徴付けられ、この赤道上での奇数次元の積分で定義されるベリー位相並びにチャーンサイモン積分は第一、第2チャーン数を整数のゲージ不定性としてのぞけば半整数値に量子化されることとなります。これがZ2量子化です。くわしくはまた!