「Thermodynamics」 第一章末問題の略解

1，When a body of gas was expanded from V_{i} to V_{f} at the pressure of p ， the work L is

$$
\begin{equation*}
L=\int_{V_{i}}^{V_{f}} p d V \tag{1}
\end{equation*}
$$

Now $p=$ constant，thus

$$
\begin{aligned}
L & =p\left(V_{f}-V_{i}\right) \\
& =2.34[\mathrm{~atm}] \cdot(4.01-3.12)[1] \\
& =2.34 \times 1.01 \times 10^{5}[\mathrm{~Pa}] \cdot(4.01-3.12) \times 10^{-3}\left[\mathrm{~m}^{3}\right] \\
& =2.1 \times 10^{2}[\mathrm{~J}] .
\end{aligned}
$$

In the following questions，we treat ideal gas．
2 ，The equation of state is witten

$$
\begin{align*}
p V & =n R T \\
& =\frac{m}{M} R T \tag{2}
\end{align*}
$$

where m is mass，M is molecular weight，R is gas constant，T is temperature． Thus，the pressure p of hydrogen is yields

$$
\begin{aligned}
p & =\frac{1}{V} \frac{m}{M} R T \\
& =\frac{1}{1\left[\mathrm{~m}^{3}\right]} \cdot \frac{30[\mathrm{~g}]}{2.0[\mathrm{~g} / \mathrm{mol}]} \cdot 8.3[\mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})] \cdot(273+18)[\mathrm{K}] \\
& =4 \times 10^{4}[\mathrm{~Pa}] .
\end{aligned}
$$

3，From（2），we obtain

$$
\frac{m}{V}=\frac{M p}{R T}
$$

We consider the nitrogen at the pressure of $1.013 \times 10^{5}[\mathrm{~Pa}]$ ．Then，the
density ρ and spesific volume $1 / \rho$ are,

$$
\begin{aligned}
\rho & =\frac{28.00[\mathrm{~g} / \mathrm{mol}] \cdot 1.013 \times 10^{5}[\mathrm{~Pa}]}{8.314[\mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})] \cdot 273[\mathrm{~K}]} \\
& =1.25 \times 10^{3}\left[\mathrm{~g} / \mathrm{m}^{3}\right] \\
& =1.25\left[\mathrm{~kg} / \mathrm{m}^{3}\right], \\
1 / \rho & =0.800\left[\mathrm{~m}^{3} / \mathrm{kg}\right] .
\end{aligned}
$$

4, From (1) (2), the work L is given by

$$
\begin{aligned}
L & =\int_{V_{i}}^{V_{f}} p d V \\
& =\int_{V_{i}}^{V_{f}} \frac{m R T}{M V} d V
\end{aligned}
$$

Now, the process is isothermal,

$$
\begin{aligned}
L & =\frac{m}{M} R T \int_{V_{i}}^{V_{f}} \frac{1}{V} d V \\
& =\frac{m}{M} R T \ln \frac{V_{f}}{V_{i}} .
\end{aligned}
$$

We consider the oxygen is ideal gas, therefore

$$
\frac{V_{f}}{V_{i}}=\frac{p_{i}}{p_{f}} .
$$

So, we get

$$
\begin{aligned}
L & =\frac{m}{M} R T \ln \frac{V_{f}}{V_{i}} \\
& =\frac{m}{M} R T \ln \frac{p_{i}}{p_{f}} \\
& =\frac{10[\mathrm{~g}]}{32[\mathrm{~g} / \mathrm{mol}]} \cdot 8.31[\mathrm{~J} /(\mathrm{K} \cdot \mathrm{~mol})] \cdot(273+20)[\mathrm{K}] \cdot \ln \left(\frac{1[\mathrm{~atm}]}{0.3[\mathrm{~atm}]}\right) \\
& =9 \times 10^{2}[\mathrm{~J}] .
\end{aligned}
$$

