Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

Condensed matter physics lecture notes

JiYoung Kang

Dept.  Physics, Tsukuba University
(Dated: Nov/29/2007)

Part 1

Introduction(2007/09/04)

Geometric phase

Quantum liquid

e Quantum Hall system

e Quantum Super conductor

e Kondo insulator

e 1-dimension integer spin chain

e Materials with strong correlation
Spin systems with frustration
dimers

e No symmetry breaking ( Symmetry breaking is no more important )

What is the Phase 7

Ans) State of matters. In physics, we need quantitative analysis to describe system. To describe phase transition, we
use order parameter.

(Ex) Ferromagnets

Let us define local magnetization mi(7) as a direction of magnetization at 7. In ferromagnets, () independent 7.
Then, the correlation length is infinity. It represents that ferromagnet has long range order. Changing of local order
parameter to long range order parameter, one can see the phase change.

Spontaneous Symmetry breaking
Locally, the system has no directional property. But, many particles (size of system — co) makes directional properties.
(i.e.) Micro system which has symmetry. But sum of micro system, macro system has no more this symmetry.
[Spontaneous(it need not existence of external magnetic field) symmetry breaking]
First, let us assume one finite system which has external magnetic field B = 0(There are some special direction.). If
one reduce the external magnetic fields, then symmetry will be recover. Let us think two ways of limit,
(a) B — 0 = N — oo [it is not ferromagnets]
(b) N — 0o = B — 0 [it is a ferromagnet]
(a) and (b) are not equivalent.

Examples of spontaneous symmetry breaking : Ferromagnets, super conductor
Spontaneous symmetry breaking(order phase)
Existence of long distance order is not always same to Spontaneous symmetry breaking.
[Existence of long distance orderSpontaneous symmetry breaking]

Order parameter gives the phase. Phase transition = phenomena of changing phase.
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Classical phase transition : In low temperature, system has order, temperately fluctuation is down. It related
competition of entropy and stabilization energy.
Quantum phase transition (QPT): Transition as changing of physical parameter near the zero temperature.

(example of QPT)

Mott transition (Metal-insulator) : In low temperature, changing of electron correlation or doping, metal become
insulator! In this case, order parameter is not clear. (Naively electricity conduction)

Transition of plate in the Quantum Hall system :
Hall conduction

(V)

. e
04y = (integer) x =
In this transition, integer change.

Change of Intensity of disorder , magnetic field (filling)

Quantum liquids
No symmetry breaking
No classical order parameter
(ex) Transition in Quantum Hall system
Non-isotopic superconducts ( Breaking of U(1) symmetry ) - there are some classes of superconductor.

Geometrical phase(Important part of Quantum effect ) — Distinguish Quantum liquids

(example of quantum liquids)

Kondo insulator (strong-correlation matter)
Kondo effect : loss of spin by quantum effect.
1-dimension : polyacetylene - strength of bonding is changing [If 1 lattice point has 1 electron, the it become insulator]
2-dimension : graphen - effective mass approximation is no more established. When conduction band and valence

band meet one point, energy E ~ ¢ ‘Ig

, and it become Dirac fermions (it follows Dirac equation).

Part I1
Quantum Hall effects (2007/09/11)

icture) Two dimension electron gas. I, = 0,,V,, 04,:quantize.
p & yVy, Ty d

0y = integer — integer Q.H.E.(Quantum Hall Effect)
= p/q — fractional Q.H.E.

(p.q) = 1 mutually prime integers. Mostly q is odd. ¢ is even in denominator state.

I. CLASSICAL DESCRIPTION

Charged particles in an electromagnetic filed
Equation of motion ?
Lorentz force is given by

mit = e(E+7x B),

where, m : mass
e charge
B magnetic field
E Electric field

=3
—

o~
=

position of particle
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Time ¢ change t; — t;. {7 (t)} is world line. In classical electromagnetism, we introduce potentials A, 0.

E = -——"—
ot ve
B =VxA
In component representation,
oA
Ei = _7_81 )
ot ¢

B; = €ix0;Ar,
where ¢ = x, y, z.Rewriting motion of equation,

0 AL - 8t¢ + Sijk'vjskl'rnalAm)

’I’I’L’/‘L =

e(=0o
= e(—0oA; — 0i¢ + €kijVi€kimOLAm)
= e (—80Ai — i(b =+ (6il5jm — 6im6jl) UjalAm)
= € (—8()Ai - Zd) + vaiAj - vain) .

To smoothly quantization, let think principle of least action. Action is given by
to )
S = [ arL(7@).7),

ty

where L indicate Lagrangian. Following principle of least action,
0S5 =0 < Newton equation of motion.

One suggestion of Lagrangian is
1 .2 R
L= imf’ —ep(r(t),t)+7- A(7(t),t).

Let us check this Lagrangian. .5 = 0 give us Euler-Lagrange equation,

doL oL
dt (97“z 87"i o

Substituting this Lagrangian,

oL .
8’/‘i = —e@z(ﬁ + Erj - &-Aj,
oL . R
o5 = mr; + eA; (F(t),1),
d 0 . .
P o7 = mr;+e (Tjain + 80Al) .

Then, Euler-Lagrange equation is given by

d oL oL
dt 87‘2 87“1-

= m’f‘, +e (fjain + aoAi) — {feaiqb + 67;j . 8ZAJ}
= O7

mn =€ (780141' — 1(,25 + 67."3‘ . 8114] — T'Ja]Al) .

This result is agreement with Newton equation.
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A. <Gauge transformation>

There are ambiguity for choosing gauge. (i.e. ¢, A are not unique. )

B = fof,

E = —0yA—Vé.
If we take

A = A+ Vy,

¢\ 1 =¢—dox-

Here, x is arbitrary single valued function. These A , ¢’ give also same electromagnetic fields.

B =VxA =VxA+Vx(Vx)=VxA=B

E = —9A —v¢
= ~00 (A+x) = V(6 - o)
= E — (8(]VX — Vaox)
= E.

We used the fact,
(V X VX)i = Eijkajakx = 0,

and derivative for time and space are commute.
By gauge transformation, Lagrangian change as following

LI

1 .2 P W
5mr —ep +er- A
1 .2 S (r
5mr —e(¢—aox)+er~(A+Vx)
= L—l—e((')ox—&-?%'-Vx).

Thus, Lagrangian not invariant under gauge transformation. However, this 2nd changed term can rewritten
(8 +7-V ) d

e - =e—X.

0X X th

Total time derivatives term can not affect the physics. Since, this term gives constant difference of action for fixed

initial and final point,
ty
S'r] = / dtL’
t

i

Y [ del
_ t te
/t +/t “atx

i i

= Slr]+elx(ts) —x ()],

and this constant cancel out when take variation.
To using canonical quantization, now we take canonical form by Legendre transformation. In the Hamiltonian
mechanics,

H(77) - :?ﬁfL(F,?;t)
. oL
Pi = =5y,
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(cf.) H (7, p) is independent for 7?7 ANS. yes!

: : L 0L
5H=5F-5+F5ﬁ—5r-‘2—57ﬁ—_

or oF
: L : L
57 (ﬁ— a.) +rop—ar- 2L
or or

. oL :
= 70p —o0r - —. (H is independent of F)
or

The Hamiltonian equation is given by

OH -
7
dp
oH _ .
or ~ P
Because,
OH -
L F
op ’
e L X T
or  or dta;o_
In electromagnetic system,
1 -2
L(",F,t) = §mf' —ep+ter-A
oL : S
P = —=mr+eA
or
. 1 R
F= = (ﬁ—eA).
m

Under gauge transformation,

L' = L+e(3ox+Wx)
oL
P = — +eVx
or
= p+ eVy. (Not invariant !)

This canonical momentum is not invariant under gauge transformation, but mechanical momentum is invariant :

L)

%(ﬁ+eVX—e(g+Vx)>

;,
T

Il
==y
+

3|
<
<

=

|

9]
<
=

The Hamiltonian is

I

=

3
=
+

1)

b

SN—
\
7N

1 .2 . =
—mr e¢+eF~A)

2
L 5
= —mr +ep
2
1 N2
= —(ﬁ—eA) +ed
2m
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II. QUANTUM THEORY - CANONICAL QUANTIZATION

(7, p): Canonical variables.
Canonical quantization is given by

(15, p;] = di5ih,

where, [A, B] := AB — BA, h indicate Plank constant.
In positional space, classical variable change as following operators

) 0
p — p——h%.

Then, we get the Schrodinger equation as followings

P 1 N2
ihsth = 5 — (—mv - eA) b+ e,

Part III
Electron in a magnetic field (2007/09/18)

Our target is explain QHE(Quantum Hall effects). As we discussed last class, it related Hall conductance. When
one put magnetic field B = BZ on 2 dimensionally confined electron system. If there exist current I = IZ, there are
voltage to contain current, since charge carrier feels Lorentz force. These relation represents as following :

[m = Umyvya
where 0,y indicates Hall conductance. Classically,
e
U:Ey = TLE,

where n is an integer. But if there are Quantum Hall effects, n change to p/g(fractional number).

ITII. REVIEW OF CLASSICAL DESCRIPTION
As we saw in the last class, Lagrangian is given by
1 -2 .
L:Emf' —ep+er- A

And canonical momentum is given by

oL S
P =—=mr+eA
or
= mU—l—e&

where ¥ := 7.

Hamiltonian is

H=gp7—L
2 Lo 1 .2 o
= (mf’ +eA~F>—(2mF —e¢+eF~A)
1 -2
= §m77 +ed
1 /. =
= —(p—eA) + e
2m
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(comment)
A
o
0A
_0H 1/, 2
=5 m (p - eA) (—e).

IV. REVIEW OF QUANTUM DESCRIPTION

Using canonical quantization,

[Tmpﬁ] = ihda,&

and in position space, momentum operator is given by

h
ﬁ: fv7
i
we can write Schrodinger equation
o
h— = H (T,
iy = H (75
h
= H F7 V) wa
i

where 9 (7, t) is a wave function.

V. GAUGE TRANSFORMATION & CONSERVED CURRENT(SPIN HALL EFFECT)

(Comment) Laughlim argument : essence of the QHE.

As well known Nother theory, symmetry gives conserved property.

We will see that the probability of density is conserved as in the level of quantum mechanics.
First, similarly to classical mechanics, we define current density as

i =vyten
Zy* (- ed) v

= Ly <7_iv . e/T> .
m 7

fors - for i)
- /df’mw*iVTb—/dFing

h 2
_ / aF (9 (07 — (V0) ] - / 4 Ay
eh , .
- |: (w w):|qurf1((\ /drﬁ vw w /d 7A|1/}|

— - [ars vy /d—AI@bI

J = apevip*.

Integrate for all space,

Also we can take
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And, to make well defined current we now define current density as following :

—.'._1 2 —.*,,)
J —2(J+]

= (V)Y — (V) Y) - S .

2mz
Charge density is given by

p(P) = el (| = vy,
where |9 (7 )| is a probability density of the particle at 7. Differentiating p () by time ¢, we get

ap o Lo
e (Frera):

Using the Schrodinger equation,

o _ 1
ot ik

<f:LV)2 - E {V~ (eff)} - QT,he/_fV + 62112> Y +epipl,

and its complex conjugate

ot —1[1 [ n
N 0 B A 20 e o) . \
- = | (iv> +i{V~(eA>}+ieAV+eA>w +e¢1/)],

we can rewrite (Eq. 2) as

Do _ £y [;ﬂ <(7Zv>2_?{V.(eg)}—?egv+e2ﬁ2>¢+e¢¢
e (19) + () 2o ) o o]

. [zjn( Z?v)Q?{v.(eg)}?jezv)yz
_fy| L ((hv)+ "y (6,4*)} " %m) v

ih2m ) )
- ol (w*(vm—w(vw )+— AWV + 0V + %h{v (e)} or’]
= = :ffvw* (V) % (V6")) + eAV - () + 2 v (eﬁ)}wﬂ
= T |V (V) (V) 4 AV o+ T (ed) o
= = L1k g (9u) v (Vo) + Zev - vy ]
= v [ e - v () - < (dv)).

8
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From the definition of current density (Eq. 1),

- he . . e2A 9
J= %((Vd))zb — (Vy") ) - WW)\ )
we finally get equation of continuity,
3,0 -
5% = -V .j.
It represents conservation of probability.
Part IV
VI. REVIEW
0
h—1 =y H
it =,
where,
1 /. N2
H = 5 (7=ed) +eo
h
i

Density p = e[|
Density current j = e S (VY — (V™) ) — %I‘TW\Q}
Conservation law dpp + V j=0.

VII. GAUGE TRANSFORMATION

Let us see gauge transformation in quantum mechanical system.
Gauge transformation

A — A =A+Vy
o Ox
6 =2

where x is a single valued function. In gauge transformation, Hamiltonian and wave function will be changed.
Assume local gauge transformation form,

W (7)) = e T (7 ),
this condition represents the phase is arbitrary at each point of space-time. (Gauge symmetry) Then,
) (7 t) = e 0D (7 1)
and we see that
(ﬁ— e/f) W = (—ihV - e/f) ey
= (=ih) (=iVO) e Y + (—ih) e OV — e A ey
A v v e,ﬂ "

)
[
— ¥ P’hv —e (/ﬂ ZW)] Y’
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last line I defined A" := A + bvo, 6 := £x).
Since

Recalling ¢ = e,

L 0 _ 9 —i60,/

lha'@[] = Zha(e w)
it () e D
= ih( z)<8t>w + ihe 8t1/1

00,0,
= hatz/) + the 8t1/1.

Then, the Schrodinger equation,
0 1 /., -\ 2
zhaw = Lm (p - eA) + eqﬁ} P,

Y =iy,

multiplying €%,

[ 2
ih %("—&4’) W+ w’—hgfw}
Y hoo\]
= g (F-ed) + ( ‘eatﬂ?”
— _L = A7 2 787)( /
- _2m< 6A> + <¢ at)}lp
_ [ 1 = A7 2 / !
— %( — ) —|—e¢}¢
_ H/d}/'
Summarizing these,
A A =A+Vy
r_g X
b =y
N2
H — H'z%(ﬁ-eﬁl’) +eg/
m
oy
o
mé)t = HY

we see that Schrodinger equation is covariant. Observables like density of probability or density current need to
invariant. Let us confirm these, density of probability is clearly,

p—p = =P,

10
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- I% N ALy VAN
T 7 = g (0790 = (0 ¥) = S A o]

j = { (v've- (Vw*)¢+2iwl¢|2>—;(I‘T+Vx)|¢|2]
_|_

.

<27122V9 — Vx)

Sy

Thus, conservation law is conserved

where @ := % is called flux quantum.

Dimensional analysis of A : From

E?:fof,.

we see magnetic field and x has following dimensional relation:

W

B~ o
x ~ B [LZ] ~ flux
X = X' [mod ®).

<Example> Let us assume that there exist uniform magnetic field B = V x A = (0,0, B)(time independent) with
E=0.
Gauge choice 1.Landau gauge ¢ = 0, A, = (0,zB,0)
Gauge choice 2.Symmetric gauge ¢ = 0, Ag = % (yB,—zB,0)

Both gauges give us

3=V xA=(0,0,B).
In steady state, we can separate variables,
W (rt) = e (),

and we have

o
— =H
ih, v,
defining F := hw, we see that
hw=F
Using Landau gauge,
1 1 , 02 _ ?
% ( — €AL> w T [—h ﬁ + <—Zha + eBw) w E¢
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Inserting
w — eikyyeikzzq) (l‘) ,
we have
1 = 7 )2 1 2§ 2 21.2 ik ik, z
—(p—eAL) = [—h O + (hk, + eBy)? @ + K2K2® | eihvyeikas,
2m 2m
Defining
h2k?
Eyp=FE— =,
2m

we can compare harmonics oscillator

R & e \?
R fB) O = Eypd
2m{ da?2+(ky+h * } 2D

R dz 1
+ —mw?x?: ¢f. Harmonic oscillator.

Co2mda? ' 2
Putting
h
X = —k
z+eB v
d d
dxX — dz’

(Eq. 3) is given by

Lz L2 = P = Eypd
2mdx?  2m h2 eB 2D

[ h2 d? T62B2

B2 d?2 B2 B2 B2
+ x4+ —=ky

© 2m da2 + 2 m?2

X“} ® = Eypd.
So,
()
w=|—
m
is called as cycrotron frequency. And Esp is quantize, it called Landau levels,

1 1

0,1,2, ...

E>p

3
|

note that k,l is dimensionless.

= —

| h
l = 4/ —= : magnetic length.
eB

note that magnetic length has a unique length scale, iw energy scale.
If there exists O # 0 Hermit operator which satisfied

12
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[H,O] =0,

then there exist conserved quantity. (Landau degeneracy)

Part V
(2007/10/02)
VIII. 2 DIMENSIONAL ELECTRON PROBLEM IN A UNIFORM MAGNETIC FIELD

Hamiltonian is given by

where, II = (11, II,),II; = (p; — eA;) . We will think uniform magnetic field,

B =VxA
= (07073)7
(VxA) = o.4,-0,4, =B

There are some commutation relations.

[Hx; Hy] = [pz - eAxapy - eAy]
= [P, _eAy} - [eAxapy]

= —e{—ihd,A, — ihd,AL)

= theB.
o[y, IL,) = theB. (4)
The last line I used
0G
iy G (Z)] = —th—.
i, G (@) = i
Let
I
Il =/ —
eB’
h
2 _ N _n
F=wm e
then, (Eq.4) is rewritten as
l l
I, 11, | =
g = )
Defining
11 ;
a= ﬁﬁ(ﬂz—&—zﬂyL
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then, thinking II; = H;r, we get

. 11 .
a' = 72%(1_[1 —ZHy),
and
1A
- = T

11, 2l(a—|—a)7
1 A

Hy = ﬁj(a—aT)

(Eq.5) is written as

. [a,a*] =1.

It represents a,a’ operators are bosonic operators. Using these operators, Hamiltonian is

1o, 1
H = %HQZ%(HEA—H@
1 (1R? 2 1A? 2
= zrn{zﬁ(aﬂﬁ) “yp (e-d) }
1 h?

= mE {aaT —|—aTa} X 2

_ IRl
T \Y e

At the last line, I used [a, aﬂ = 1. From the definition of [ = /2

eB’

1 h? 1
H = —— 14t Z
le{ a+2}

_ MeB .41
- m h @ 2

1
= T -
ﬁw(aa—l—2>,

where w = %. It is Harmonic oscillator’s Hamiltonian.

H = hw<n+;>

f = a'a : number operator

Eigenvalue n = 0,1,2,3,- -+ , B, = hw (n+ 1).
FEigenstate

(af)" |0),

£l

Il
o
-

al0) =

14
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A. Guiding center operators

(ct.) Dimension analysis

There are some commutation relations

[x7 Hw] = [mv (pw - eA:p)]
[, ps] = ih.

ly, II,] = ih.
[z,11,] = [y, ;] = 0.

[IL,,I1,] = iheB

We can easily see that
{H7 Jﬂ = 0.
To see this, first we consider

[H, R,]

Il
i
5|

1 9 ) 12
— (Hz+1‘[y),x+ﬁny

= Lz D e,
2m 2 LY
_ ] - e+ S ] — (T L)
- 2m xT ajam xa T €T h T T Yy Y €T T
= iy — i + £ (nes) x 2
= 50 2 (—1 ) a7 sihe
1 B/ h
Similarly
[H,R,] = 0.
Thus we see
[HJ?}:O.

This means H and R operator has simultaneous ket.

15
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(cf1) Review of quantum mechanics.

In general,
O : Hermitian operator. (O = O’L)

Then

Ola) = ala) a:real

(0" = (a|0 = alal.
Assume

[H,0] = 0.

For o # 3,

(o [H,0]]8) =0,

(o] [H.0]18) = (o] (HO — OH) |5)
= (a— ) (alH|8) = 0.

- Aa|H|B) = 0.
This means eigenkets of operator O are also eigenkets of H, since these eigenkets diagonalize H.

dln, @) s.t.
H|naa> = En|TL,C¥>
Oln, o)

aln, a).

(cf2.) In our system,

Here one should note that

12 12
[R., R, = [x + =1,y — Hx]

h
2 2 ",
= -3 (th) + m (—ih) — =) (—iheB)
* L h
-w(-z)
= il”.
R, R,|
op
(cf3)
[;HI, ;Hy} =1
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H|n,m)

n,m)

l N/
(hﬂw —I—zhﬂy> , [a,a*] =0

R, R,
(z“z)’

[b,b7] = 0.

|
Sl Sl

E,|n,m)
11 0o
ﬁﬁ(‘ﬂ) (a)™10),
1
hw <n—|— 2) : m independent

1
hw (aTa + 2> , m=0,1,2,--- = Landau degeneracy

IX. 2 DIMENSIONAL BLOACH ELECTRONS IN AN UNIFORM MAGNETIC FIELD(PREVIEW OF

NEXT CLASS)

Thinking 2 dimensional lattice with lattice constant a. At a — 0, we get continuum limit. Gauge transformation,

If one think gauge

then,

Hamiltonian

where m,n represent lattice point.

One particle state

{¥,,n} has linear equation

A - E’zﬁf—i—V)@
'(/1 _ ¢’=ei2w£7xw.

>0
Il
|
S~
o 3
QU
=
o~

H=T,+T,+hc.
T, =Y te"nCl .\, Cr o,

e iei’nn T
Ty - Zt@ C’m 7L+1Cm”“

m,n

{Clznvcm’n’} = Smm Onn’-

|w> Z ¢77LTLC:TLTE|O>

Hly) = Ely).

’(/}nm = Tﬁ(an),
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¥ (7) satisfy

in continuum limit.

Part VI
(2007/10/16)

Square lattice, lattice point (m,n).

x-directional Translation operator

y-directional Translation operator

One particle state

Schrodinger equation

letting m + 1 = m/,

HY 4, ,Ch ,0)

m n

e oy i .
= E ’(/}m n (tetenz VLC”:L+1 n + telanL " Cm n+1 + te ’LenL—l nCm—1n + te 0

m n

hx SNy — 0% —
= E t(elom nC’iﬂ+1n+ elem 'n.Cm nt1 e 00 1 n m—1n+ €

m n

o oy o _
-t (ewm "'O:n+1 nt elem »Chy ntl T € W "Cmo1nt €

Rotating one plaquette gives

T =3 te s nCl

L 12 () = By ()

2m

QUANTUM HALL EFFECTS

0%
T, = ZteZ mnCrTn:I,nCm,n-
m,n
= ie'fl'lYl’VL T
Ty - Z te C’rn-‘rl,’n,cman'
m,n

) = Z¢m nCm n0).

HIy) = El).

0° t
(Z teifnnCl | Crn n)

Zte Won CF Const n

Cr n-

m’'—1 n

W05, 1 CT

07, W1 CT

m n—1

ngn = efnn_ei’b n+1+93n+1 n_egnn:27r¢a2a

loop

18

?7/77, nflCT

fuea)10)

b uet) Clal0)

) —Ey,, ..
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where a is a lattice constant.

p - 27 (m+1,n)a

mn °

=T d- A,
D (m,n)a

where A is a vector potential, V x A = B. For small a,

2T
0% ~ —aA,,
mn (boa

s0,
ZG ~ —a0y0” + ad,60Y

loop

21a?

[*Cf.@y ~ %’;aAy

S0 = T4

loop

= B =27¢,

where ¢ = p/q, (p,q) mutually prime integers.

B Ba?

¢ = T Flux per plaquette in unit ®.
0

wmn : :¢((ma”)a)7 (m;n):an
11Z)7n+1n = w(an+a(1aO))

U (o) + 00,0 + a0

12

wmfl n ¢ (an - CL(l,O))
Y (Foun) — adpth + %az’agw

1R

07 —i0% i0Y —i0Y
t (e m-t 77’¢m—1 nte m "Tﬁm nte’™ "_1¢m n—1te m ”UJm n) = Eiﬁm n-

Putting Taylor expanded 1,0 into this equation, we have

2
= <hveﬁ> Y = e,

2m \ ¢

where
h2

= — (EF—41).
2mta2( )

3

Hamiltonian is

H = Z te'fii CJC]» +h.c.,
(i.4)
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

we introduce new operator ¢, := e C;, {ci, c;} = 0,5, {c;, C;T} = 0;j,
R S
(i,5)
= Z tei®ietiig=i%; C;TCJ/- = em;j7
(i,5)
Gij = 95] + d)i - ¢j'

H=> teC'Cj+h.ec
(i.d)

(C! Ogj) :gauge symmetry.

*(cf.) Landau gauge and Symmetric gauge.
Take Landau gauge on a lattice

2 (m + 1) — 2npm = 27w,

Uniform B on a lattice

where p, g are integer.

Cin n @ real space
We take Fourier transformation to momentum space C' (E)

!/ "
m=qm +m

1 1 G
Z ezkxm +ikyn o (k;u ky)

Cmn=—7=
mn m\/fykk

H = tz (Cjn_i,_lcm n+ h.c. + €i2ﬂ¢mcjn/ 7L+1Cm n + hC) .

n

Part VII
(2007/10/23)

XI. FOURIER TRANSFORM OF FERMION OPERATORS

Cja j:1a2,37"’

_ Tt Tl
{Cicsy =0, {cl.cfh =0, {cicl} =
{A,B} : = AB+ BA.
Linear transformation

Cj —Cr, k=1,2,--- N.
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

Ch Ch

C=|:1, ¢=1:
Cn Cn

¢ = uc,
Iy = UU' =UU, U:nxn unitary matrix

For convenient we define Ujx := (U) ;.
Cj = U;iC,
here we used Einstein convention.
U'é = Ulué = ¢ .
Cr = (UT)kj C_:j
= U;C;.

Let us check the commutation relation. It is trivial to show that

{onov) = {Lal) =o

{encl} = {vnci o'}
= {upcs, ]
= U5 {C5.CL
= Uy Ujdjj
- (UT)kj (U) 4 = Ok
When we take Fourier transformation as a linear transformation,

S 27 1, .
iRk

(U) = ¥,

where U is an unitary matrix.
(*cf) Let us check fact that U is an unitary matrix.

(UTU)M« = (UT>kj (U)jk’

Discrete Fourier transformation

will go continuum limit when N — oo, AK = QW’T — 0.
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

Let us consider 1-dimension lattice. N-site problem. (Let N=even number). Let q is a periodic of x-axis. Taking
Landau gauge, ¢ = p/Q7 (p,q) = 1.

1 . /
— zkyn ezkmm . (k k )
mn m zy vy )
y ; Lr/q %;
where m = gm’ +m”, m"”" =1,2,--- /¢ (m/,n) : label of the cell.

H=T,+T,+hc.

1 —17n1n72m71m
= tz Z me ky eky € ik ik, Cjn”-l—l (kl’ky) O’”” (kw’k;)

tzc;”ﬂ (ka, ky) Crrr (K ky) :

m!

" =1 toq.

gm’ +(g+1) =q(m'+1)+1

Cot1 (ko ky) = e Cy (ke ky) -

0 e~ 1qka &
= [el (8) et (@) < e (@)« | |
10 c,

T, = > tCl , 1Cun

m n

Z Z L L 7”6 (n+1) zk y " ZkTm ikzm CL”CmH

_ Ze “cvcjn,, () G (E).
e—iky+2m ' 0 Gy
) [CIT (E) C;r (E) Cg (E)} § o—iky2+27m 92 ) y Cs
0 . e~ tkyqt2mdq C"q

H =T, +T,+h.c.

- Lo (Hue(F)

T, = > Cl pi1Cr ne®™m
= 3701, i1 Cy e (e )
= > C 1 Con e
= >0 i1 O e
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

cos (ky —2m¢ - 1) e iaka
cos (ky — 2m¢ - 2)
H =
e'ake cos (ky —2m¢ - q)
k (kz,ky) : Brillouin zone

ky, € [0,2n], ky € 0,27
L,, L, — oo.

o (E+ (0,277)) —c (E) .

Q
—~
B
+
S
A
=
~
Il

Energy eigenvalue 7
=Y o (B u () o (F).
E
where H is an hermite matrix. It diagonalized by unitary matrix.

H¢1 = E1¢1,

Ho, = Eq0,

here, we put E; < E; (i <j) , qb;(bj, = ¢+ (orthonormalized ¢.) .

HU = DU,
where
U = |:Q_§1 52 (_b'q )
Fq 0
Ey
D =
0 E,
E;?

E; (E) : one particle energy.

Hip;) = Ejlo;),

S CEIGEGH



Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

Cy (k)
oy = St () |7 (el (7) et 8) - g9 0
C, ()
1 0
- ctmEw)| 0) 3,
0 1

= CT (k) H(K)¢,10)
= E; C1 (k) §,]0).

For many particle state (Fermi sea.)

E;(k)<Ep, Ej(k) 7=1,2,---,q. ¢=p/q, ¢ €[0,1]. We can find Hofstater’s Butterfly.
Adiabatic approximation (7" — o0)
Linear response — Hall current.
05y —topological integers.

Part VIII
(2007/11/06)
XII. QHE

For 2-dimensional metal plane with z-directional magnetic field and x directional electric potential, we have seen

OH

Iy=——".
YT T4,

For an infinitesimal translation, Y = 2w¢m + ZﬂéoaAy.The Hamiltonian is
. oL
H = chn n—‘,—lez Amometz ®o o mn T

Zezk mC iy (k‘w,kj )

C’m,n — Z ikyn q

For
—iky + 227r aA <I€y — 27r> =0,

we have

_oH _, a 0H
04, T ® Ok,

= (G'|1,|G"),
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

here, we use the linear response theory, |G') = |G) + V.

I, =0y Ey,
o oA
E=-V¢— —
Vo — 50
let ¢ =0, and A change slowly, then we see
A, = —E,t.

For |G),

For |G),

ih|G' (t)) = H (t) |G’ (t)) : time-dependent Schrodinger equation.

H(t) |Oé(t)> = E, (t)|0[(t)>, a=1,23,---

let g is the @ = 1 state(ground state).

Gy = e I E) S G (1) o (1)),

[e3%

then,

ihd,|G) = Eg|G") + e o WE()NT (ag () [ (1)) + aa (8) | (1))

= He® Jo WE(U) N (aq (1) | (t))

— e JodtEy(Y) > (aa (8) Eola (1)) (6)

Taking (g| to (Eq. 6),

For small ¢, |G’) ~ |g),

e
Q
2
S
Q
>~
=N
Ns}
NS

ag e*ft<g|9>dt, Berry phase.

For a # g, taking (o] to (Eq. 6),

aoEq = Egag + ag + Z aq (e,
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

for small ¢,
(Eoz - Eg) Ao = aa + ag<a‘g>

if we neglect a,,

L el
T FEa-E, "
(Adiabatic approximation.)
Part IX
(2007/11/13)
G) = Y Cala(t)
la(t)) : eigen state of the snap shot Hamiltonian

9
ih=|G) = H|G)
H (@) |a(t)) = Ea(t)|a())

e

Q

Cy

)
t

where v = — [ dit(g|g) Berry phase
0

Co ~ ihC, E<0‘|92E
g~ Ha

[Cal < 1Cy| (a#9)

(Iy) = (GII|G) = (gllylg)

= (C;‘<g| + Z C’;<Oz|) I, (Cg|g> + Z Ca|a>) —(9llylg)

a#g aFtg
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

Using CyCy = 1, |Co| < |Cy| (@ #9),

(1)) = Y (Cigll,|a)Ca + Ciilall,|g)Cy)

a#tg
N o gllye)(alg) . (Gla){elly|g)
N;(zh F,— Ea ih Fy — Ea ,
. a OH
using {Iy—Qw%ak
. a Aalgitla)(alg)  (gla){alFlg)
= thWgOZ <zh E,—E —ih E, — Ea )
a#tg
. 0 aFE, 0 J
using {015 =27 ; ak},let {% =: 8y}
a . aBE, Aglgitla)(eldeg)  (Osgla)(alFil)
= (I)O 4)0 Z (’Lh E E —ih Eg Ea, )
a#tg
using {h: i dy = h},
27 e
Sicla)(ald.g) (Dugla) (@l 5 |g)
_ 2 . .
= m E 271'2 < Eg o i E, - Ea . (7)
aF#g
Using
Hla) = Ea|)
9y (Hlg)) = 0y (Eylg))
(0yH) |g) + H|0yg) = (0yE)|g) + Eal0yg)
" {(aloyHlg) + Eao <a|3y9> (alg)0y By + Ey(c|0y9)
" (|0, Hlg) = (Ey — Eq) (a]0yg),
(Eq. 7) become
fm Ex2m Y ((Dxgla)(@]dyg) — (9ygla)(@]d.g)),
aF#g
using {Z a)al ~ 3 laal = 1} ,
a a#g
e,
= -ia” Ey2m ((0:9]0y9) — (9y91029)) - (8)

h
Using

9) = II Clo)o),

l
B (kK)<Er

kz

0u0l0y9) = > (owvfo,u - oyvfow)),

Sl(E)<EF
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

(Eq. 8) becomes

2

2
%iEﬂwLxLy / (;ZWI;Z Z ((%ﬂ/)j@wf/ 9, jaml)
e? . d2k .

= S, [ @Ry (vxd).

= JyLy.
jy = Uy:rVa:
oy = —C L [ (vXA')
o h2mi 2
Part X
(2007/11/20)
02
1 ST, - -t =
¢ = %izj:/Ej(k)<EF(k) & (@%@,%—%%&E%)
- Z C;
j=1"Np
1 : one particle wave function
Nr : number of bands blow Ef.
H (F)&; () = B () & (F)
H : ¢ x g matrix

vj

Y, = |

V]

H|1/Jj> = Ej|¢j>

1

= Ak ((059]0y ) — (0y1)|0s
5= 57 ). ey (0010000 = @100

—

A = WilVyy)
A = (V) = ($|0,9) (j is omitted)
AV = (V) = (4]0y)

(V X /T) = 0:Ay — 0, A,;
= 0, ((10,9)) — B, (10.))
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

Charm number of the j-th state is given by

1
o 2mi BZ

1

— dr- A.
27 oT2=0

; d?k(V x A), =

Is this value zero ?

i
H () [ (k)<

(VIVit)
E (k) ¢ (k))e”

each k is independent

H[p) = E[).

Let e = w,

Hy)w = Elp)w

H|Y") = E|¢')
where ) = [¢)w
(Ylyp) =1
W) = |wf’
sl =1
w is smooth in k.
Vig') = V(l$)w)

= |[VY)w + |¢) (Vw)
A = w*Aw + w*Vw

w = e’
Alwl® + e (iv0) ¥

= A+4iVO : gauge transformation in k space.

B
I

VxA = VxA
= Vx (/T + iVG)
= VxA.
C is gauge invariant.

choice of w = € < choice of gauge

P = |[y)(¥]
p:=pr
P = [ ) (@]
= W) |w|?
= P

P is also gauge invariant.
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

3 |¢) fixed state
WYy = Pl¢) : gauge fixing

H|yY) = HP|¢)
= H|$)(¥|9)
= E|¢)(¢]¢)
= ERY).

9" is normalized ? Generically net normalized

N = @"[Y)
(¢|P- Plo)

= (¢|P|¢)
{
|

Bw) (¥|9)
(Wl

N = [(lo)[*
W (0/]6)]"
= |(®]¢)]> = N : gauge invariant N # 0

) = —=[").
@My = 1.
When N # 0 for Vl_c’7 C; =0.

T2 = D_UD-
D_ inside of T? torus

D- outside of T? torus

C; = % o @k (V x )
1 o 1 =
o D<d2k(V><A’)+2m,/D>d2k(VxA)

1 - o 1 -
2me O 27
1

21 8D<

b

A A

%Pw - %N
Ny = ﬁpwvzj—ﬁwwwvzwﬂw,

™) [¥)(]9)
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Lecture given by Y. Hatsugai at U. Tsukuba 2007 ( Note taken by J. Kang)

VN{|¢')

— VN(Y]o)

_[(Wl)] |(w]g)| etAratvien
[(|d)] ()| @)| e?Argtwlo)

i Arg {b1e') ;
= M9 = el

(¥lg')
(¥lg)

0 = Arg

A = W @M VYN + Wt (PN [N ) Ve
= A+ w'Vw

A+e (Vo) e?

= A+iVe.

Assumption %Ilsz;'; single valued on 9D

1
C; = EQannEZ

2
Opy = %C

C =) C=>n
J J

Ozy : intrinsically integer

A= (0IVy)
Berry’s connection

H(R) |y (R) = E(R)|¢(R))
R : any parameter R = (R17R2,~-~ ,RD)

A, =®|0w) pw=1,2,---D, D: # of parameter

W, = %dR“A# : Berry phase

= faro,)
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