This short note is for details of the Laughlin argument (R. B. Laughlin, Phys. Rev. B
23, 5632R (1981)), which is the key arugment for all topological phases.
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I. GAUGE TRANSFORMATION
A. Classical mechanics Iy

Charged particles in EM field
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Gauge transformation Writing the wavefunction as
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It implies the consistency of the gauge transformation.
B. Quantum mechanics II. LAUGHLIN ARGUMENT
The gauge covariance of the Schrodinger eq. requires Let us discuss the situation in Fig.fig:laughlin
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Py Noting that e < 0, one has for an N partcile system
h (;i =H"y on dthe cylindrical geomety, electron density n = N/L,L,
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since —e(v,) is a current density and L, is a section of
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are estimated as
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where E is a total energy of the N-electron system. Then
one arrive at the formula by Byers-Yang as
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where we assume

A, = const.
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See. Fig.1 and the discussion in the next section.

B. AB flux

Introduction of ® is described by the vector potential
Ag
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where 05 is a boundary of the cylinder of the length L, .
Then one can choose A’ = 0 by taking

Vx=-4¢
Note that this is only possible when
rot Ap = 0.
One form of such a solution is
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Then assuming the periodic boundary condition for 1,
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the gauge transformed wave funstion ¢ satisfies
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although Ag does not apper in the Schrodinger equation
for 1)’
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Generically the flux ® does modifies the system thorough
the boundary condition. However if
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the flux ® does not affect the system.

C. Laughlin argument

When the system is sufficiently large, effects of ® for
the local hamiltonian is O(L,"). Then let us consider an
adiabatic increase of the ®. By replacing d® to a finite
difference A®, one has
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When A® = P, the system goes back to the original
state. Then only a possible modification of the system in
the adiabatic process is that n € Z electrons are passing
through the system. Now we have an estimate
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