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I. GAUGE TRANSFORMATION

A. Classical mechanics

Charged particles in EM field

L =
1

2
mṙ2 − eφ+ ṙ ·A

p =
∂L

∂ṙ
= m · r + eA

H = p · ṙ − L =
1

2m
(p− eA)2 + eφ

eṙ = ev =
e

m
(p− eA) = −

∂H

∂A

Gauge transformation

A′ = A+∇χ, φ′ = φ−
∂χ

∂t
B′ = rotA′ = B

E′ = −
∂A′

∂t
−∇φ′ = E

L′ = L+ e(ṙ ·∇χ+
∂χ

∂t
) = L+

d

dt
χ(r(t), t)

p′ =
∂L′

∂ṙ
= p+ e∇χ

p′ − eA′ = p− eA

ṙ′ = ṙ

H ′ = H − e
∂χ

∂t

B. Quantum mechanics

The gauge covariance of the Schrodinger eq. requires

H =
1

2m
(−i~∇− eA)2 + eφ

H ′ =
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(−i~∇− eA′)2 + eφ′

i~
∂ψ

∂t
= Hψ
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∂ψ′

∂t
= H ′ψ′

(i~
∂
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− eφ)ψ =

1
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(i~
∂

∂t
− eφ′)ψ′ =

1
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(−i~∇− e∇A′)2ψ′

FIG. 1. Laughlin’s geometry

Writing the wavefunction as

ψ′ = ψ exp(i
eχ

~
) = ψ exp(i2π

eχ

h
) = ψ exp(i2π

χ

Φ0

)

we have

(i~
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− eφ′)ψ′ = exp(

eχ
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[
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∂

∂t
− e(φ′ +

∂χ
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]

ψ

= exp(
eχ

i~
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∂

∂t
− eφ)ψ

(−i~∇− eA′)ψ′ = exp(
eχ

i~
)

[

− i~∇− e(A′ −∇χ)

]

ψ

= exp(
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)(−i~∇− eA)ψ

It implies the consistency of the gauge transformation.

II. LAUGHLIN ARGUMENT

Let us discuss the situation in Fig.fig:laughlin

A. Byers-Yang formula

Noting that e < 0, one has for an N partcile system
on the cylindrical geomety, electron density n = N/LxLy

and

Iy = −e〈vy〉nLx

since −e〈vy〉 is a current density and Lx is a section of
the cylinder. Here the average velocity of the electrons
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are estimated as

(−e)〈vy〉 =
1

N

N
∑

i

∂H

∂Ay

=
1

N

δE

δAy

where E is a total energy of the N -electron system. Then
one arrive at the formula by Byers-Yang as

Iy =
1

N

δE

δAy

N

LxLy

Lx

=
1

Ly

δE

δAy

=
δE

δΦ
: Byers-Yang, PRL 7, 46 (1961)

where we assume

Ay = const.

Φ ≡ LyAy

See. Fig.1 and the discussion in the next section.

B. AB flux

Introduction of Φ is described by the vector potential
AΦ

∮

∂S

dr ·AΦ =

∫

S

dS · rotAΦ = Φ

where ∂S is a boundary of the cylinder of the length Ly.
Then one can choose A′ = 0 by taking

∇χ = −AΦ

Note that this is only possible when

rotAΦ = 0.

One form of such a solution is

χ = −
y

Ly

Φ,

Ay = −∇χ =
ŷ

Ly

Φ = const.

∮

∂S

dr ·AΦ =

∮ Ly

0

dŷ ·Ay = Φ.

Then assuming the periodic boundary condition for ψ,

ψ(x, y + L) = ψ(x, y)

the gauge transformed wave funstion ψ satisfies

ψ′(x, y + L) = e
i2π

Φ

Φ0 ψ′(x, y)

although AΦ does not apper in the Schrodinger equation
for ψ′

i~
∂

∂t
ψ′ =

[ 1

2m
(p− eA)2 + eφ

]

ψ′

i~
∂

∂t
ψ =

[ 1

2m
(p− e(A+AΦ)

2 + eφ
]
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Generically the flux Φ does modifies the system thorough
the boundary condition. However if

Φ = nΦ0, n ∈ Z

the flux Φ does not affect the system.

C. Laughlin argument

When the system is sufficiently large, effects of Φ for
the local hamiltonian is O(L−1

y ). Then let us consider an
adiabatic increase of the Φ. By replacing δΦ to a finite
difference ∆Φ, one has

Iy =
∆E

∆Φ

When ∆Φ = Φ0, the system goes back to the original
state. Then only a possible modification of the system in
the adiabatic process is that n ∈ Z electrons are passing
through the system. Now we have an estimate

∆E = neVx

and

Iy =
neVx
h/e

≡ σyxVx

it implies

σyx =
e2

h
n
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