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Classical to Quantum 

Classical to Quantum
More than Moore to the real breakthrough 

Use of quantum coherence

Topological insulator (Quantum Spin Hall effect): From Spin to Spinor

Time-reversal

Kramers degeneracy

Rotation: Spin & spinor



Classical & Quantum observables
“Classical” Observables

Charge density, Spin density,...

“Quantum” Observables !
Quantum Interference:

Diffraction
Aharonov-Bohm Effect
Berry phases

⇥O⇤G = ⇥G|O|G⇤ = ⇥G�|O|G�⇤ = ⇥O⇤G�

|G�⇤ = |G⇤ei�

O = n� ± n⇥, · · ·

�G|G + dG⇥ = 1 + �G|dG⇥

|Gi� = |G�
i�ei�i

�G1|G2⇥ = �G⇥
1|G⇥

2⇥ei(�1��2)

Unitary invariant

depend on the phase

charge, 
magnetization, ...

:Berry Connection

:Berry Phase           

A = �G|dG⇥

i� =

Z
A

C =
1

2⇥i

Z
dA :Chern number          

polarization

Hall conductance

Classical to Quantum 



Topological Insulator
Topological insulator : Quantum Spin Hall state

TNG
2D

3D

Classical to Quantum 



Classical to Quantum 

B

spin up

spin down

“Quantum” Spin Hall Effect
= Quantum Hall Effect without magnetic field

= Quantum Hall Effect with time-reversal invariance

QHE

B

QSHE
TR is brokenTR invariant

No classical correspondent !
Think different 
Following the QHE

No external net magnetic field

Quantum effects !



Topological Insulator

Topological insulator : Quantum Spin Hall state

TNG
Time Reversal

Kramers 
degeneracy

Let me explain !

Need to undestand !

Classical to Quantum 

Spin Hall conductance is not quantized
Spin is not conserved (spin-orbit)

so-called



Classical to Quantum 
Time-Reversal (TR) symmetry & Kramers degeneracy

TR: Anti-Unitary ⇥
& complex conjugateH = c†iHijcj

ci =


ci"
ci#

�
!


ci#
�ci"

�
= Jci: 

[�,H] = 0
TR invariance

JH⇤J�1 = H {H}ij = Hij

J = i�y =


0 1
�1 0

�

H =


t �

��⇤ t⇤

�

✓
0 1
�1 0

◆✓
a b
c d

◆⇤ ✓
0 �1
1 0

◆
=

✓
0 1
�1 0

◆✓
a⇤ b⇤

c⇤ d⇤

◆✓
0 �1
1 0

◆J J --1H *

=

✓
c⇤ d⇤

�a⇤ �b⇤

◆✓
0 �1
1 0

◆
=

✓
d⇤ �c⇤

�b⇤ a⇤

◆
=

✓
a b
c d

◆

H
a = d⇤, b = �c⇤

& hermiticity
t† = t hermite

anti-symmetric
�† = ��⇤ ! e� = ��

: Spin-orbit, Rashba term, etc.�

t : Spin independent hopping



Classical to Quantum 
Time-Reversal (TR) symmetry & Kramers degeneracy

tu+�v = Eu

��⇤u+ t⇤v = Ev

tv⇤ +�(�u⇤) = Ev⇤

��⇤v⇤ + t⇤(�u⇤) = E(�u⇤)

Orthogonal !


u
v

�† 
u⇥

v⇥

�
= u�v� + v�(�u�) = 0

Kramers degeneracy

Schrödinger Equation

Ah !


u⇥

v⇥

�
=


v⇤

�u⇤

�

&


u
v

�
: the same energy,  degenerate ?

H


v⇤

�u⇤

�
= E


v⇤

�u⇤

� 
v⇤

�u⇤

�
is also an eigen state with the same energy

,

Not yet !
the same state ??

OK ! surely different !


t �

��⇤ t⇤

� 
u
v

�
= E


u
v

�

Any one particle state is doubly degenerate



iH ⇠= i�z, jH ⇠= i�y, kH ⇠= i�z

H =


t �

��⇤ t⇤

�
= (Ret)I2 + (Imt) i�

z

+ (Re�) i�
y

+ (Im�) i�
x

⇠= (Ret) 1 + (Imt)iH + (Re�) jH + (Im�) kH

i2H = k2H = k2H = iHjHkH = �1

: Quaternion (四元数)

F.J.Dyson ’61--

Hamilton 四元数発見の碑

Time Reversal & Quaternions

No magic, neither crazy
just Pauli matrices

Quaternion 2×2 Matrix, Yang Monopole & quantization: YH, NJP12, 065004 (2010)

Classical to Quantum 

real number

complex number
Quaternion

H
CR



Time-Reversal, Spins &  Spinors

c =

✓
c"
c#

◆
Ŝ =

0

@
S
x

S
y

S
z

1

A = c†Sc S =
�

2

spinorspin

, ,

�Ŝ��1 = c†S�c

S� = JS⇤J�1

�⇥
x

=

✓
0 1
�1 0

◆✓
0 1
1 0

◆⇤ ✓
0 �1
1 0

◆
=

✓
1 0
0 �1

◆✓
0 �1
1 0

◆
= ��

x

�⇥
y =

✓
0 1
�1 0

◆✓
0 �i
i 0

◆⇤ ✓
0 �1
1 0

◆
=

✓
�i 0
0 �i

◆✓
0 �1
1 0

◆
= ��y

�⇥
z =

✓
0 1
�1 0

◆✓
1 0
0 �1

◆⇤ ✓
0 �1
1 0

◆
=

✓
0 �1
�1 0

◆✓
0 �1
1 0

◆
= ��z

B · S ⇥ �B · S Zeeman term breaks TR
Magnetic field 

� c��1 = Jc

S⇥ = �S

Classical to Quantum 



Quantum Spin Hall effect ??
Topological insulator : “Spinor”

Purely quantum mechanical !

Quantum  Spin      Hall state

Classical to Quantum 



Edge is topological

Edge is topological 
Right / left to the symmetry : Topological phases

Topological protection

Zoo of boundary states

Bulk-Edge correspondence 

Edge states of topological insulators 



What’s topological ?
Topological ?

Edge is topological

g = 0 g = 1

g: # of holes

Integer! 
Topological numbers



Topological numbers in physics
Edge is topological

Vortexes Historical example

+1 +1 --1

+1-1=0

If # of the net Vortexes is finite, it’s hard to disappear

Need finite energy to collapse, otherwise stays FOREVER !

stable

unstable



Topological stability
Edge is topological

Need finite energy to collapse, 
otherwise stay FOREVER !

Topological stability

It implies possible stable devices 
with low error rate !!

stable +1

Topological number is discrete in many cases.

Quantization

Topological quantum computer !!??
Not by 5/2 FQH state, now by topological insulators (?)

�
xy

�0superconductivity

quantum Hall effect
flux quantum 



Right / left to the symmetry
Edge is topological

Bloch theorem T�(r) ⌘ �(r + t) = eik�(r)
[H,T ] = 0

| (r)| = | (r + t)| = | (r + 2t)| = · · · = | (r + 1010t)| = · · ·
Extended over the whole space 

Energy bands : energy of the extended states

With translation invariance

With boundaries/ impurities
As for extended states, effects of edges can be negligible !

dimension is less !
States in the energy gap are localized !

since they can not be extended

0D impurities/1D boundaries in 2D

Bound states / Edge states



Right / left to the symmetry
Edge is topological

Clear difference only in the infinite system

V: Volume

Bound states / Edge states

Extended states

�b(r) ⇠
1p
a30

e�r/a0

�e(r) ⇠
1p
V
eikr

a0 :size of the bound state

�! 0 (V ! 1)

unnormalizable

normalizable
5 10 15 20

2

4

6

8

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2



Right / left to the symmetry
Edge is topological

Right / left to the symmetry 
                       only in the infinite system, 
             since the Boundaries are far away !

On cylinder

L R
R

| �
L

| �|±� = ±

Finite system

Bulk-edge correspondence：Emergent principle
c.f. spontaneous symmetry breaking : dynamical



Why do we care edge states?
Edge is topological

Accidental ?

NO !

Inevitable reasons

Physical Structures behind: 

“Bulk determines the edges” 

“Edge determines the bulk”

Bulk-Edge Correspondence

Protected by Topological constraints

 Why the Edge States are there??



Gapless excitations
insulatormetal

Are insulators boring ??

Excitations need finite energy

Metal is unstable

Metal is useful & interesting

Exact zero gap excitation needs some protection or fine tuning

Successful industrial applications

Nambu-Goldstone

Critical, RG,anomalous fermi liquids...Also for physicists :

“high energy” effective theory ?

Classical
Ohm’s law  up to now

Time reversal

Bosonic
Fermionic Edge states, Domain wall fermions

2D Dirac fermions of 3D TI

Breaking of continuos symmetry

Nielsen-Ninomiyachiral symmetry 
Topological

Peierls instability, Cooper instability ,...

Edge is topological



Gapless excitations
insulatormetal

Are insulators boring ??

Excitations need finite energy

Metal is unstable
Metal is useful & interesting

Exact zero gap excitation needs some protection or fine tuning

“high energy” effective theory ?

Band insulators
Superconductors ?!

Insulator is stable

Long history of research
Standard material 
            in condensed matter course

Gapped Excitation  (mostly) 
Stable for perturbation

Peierls instability, Cooper instability ,...

Edge is topological

Lots of new topological phases

Insulators are topological !?

Topological insulator
as a Quantum Spin Hall state



“Insulators are stable” implies “Topological”

Absence of low energy excitations
Energy gap above the ground state

Lots of variety
Absence of fundamental symmetry breaking (mostly)

Quantum/spin liquids (gapped)

Insulators : Gapped 
Band insulators
Superconductors
Integer & Fractional Quantum Hall States
Integer spin chains (Haldane)
Dimer Models (Shastry-Sutherland)
Valence bond solid (VBS) states
Half filled Kondo Lattice       
Spin Hall insulators
Kitaev model & string net

Mostly Stable against interaction!!

Edge is topological



Absence of low energy excitations
Energy gap above the ground state

Lots of variety
Absence of fundamental symmetry breaking (mostly)

Quantum/spin liquids (gapped)

Insulators : Gapped 
Band insulators
Superconductors
Integer & Fractional Quantum Hall States
Integer spin chains (Haldane)
Dimer Models (Shastry-Sutherland)
Valence bond solid (VBS) states
Half filled Kondo Lattice       
Spin Hall insulators
Kitaev model & string net

No Response for small perturbation

Gapped: Nothing in the gap : cf. Nambu-Goldstone boson
No low lying excitations 

??
？？？

gapless modes:
acoustic phonons

zero sounds
spin wavesinsulator

Edge is topological

“Insulators are stable” implies “Topological”



Insulators : Non metal, gapped 
Band insulators
Superconductors
Integer & Fractional Quantum Hall States
Integer spin chains (Haldane)
Dimer Models (Shastry-Sutherland)
Valence bond solid (VBS) states
Half filled Kondo Lattice       
Spin Hall insulators

Quantum liquids (gapped)

Zoo
Something for classification

Topological Order

X.G.Wen ’89

Integer & Fractional Quantum Hall States

Topological order
Edge states
Berry connections

Kitaev model & string net

“Insulators are stable” implies “Topological”
Edge is topological



How to understand gapped quantum liquids ?

Bulk classically featureless 

Edge low energy  localized modes in the gap

1-st Chern number for QHE

Thouless-Kohmoto-

    Nightingale-den Nijs

edge states for QHE Laughlin, Halperin, Wen, YH

Lessons from history : Quantum Hall states and Spin 1 chains

QHE

Niu-Thouless-Wu

Bulk-Edge correspondence
Common property of topological ordered states

Edge states

YH

Edge is topological

 Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)



 Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)

No Long range order
Valence Bond Solid states Affleck-Kennedy-Lieb-Tasaki

S=1/2 local spins near the spin defects

Bulk-Edge correspondence
Common property of topological ordered states

Lessons from history : Quantum Hall states and Spin 1 chains

Integer spin chain

Hagiwara-Katsumata-Affleck-Halperin-Renard

Haldane

Kennedy

Bulk

Edge

classically featureless 

low energy  localized modes in the gap

Edge states

Bulk Gap
Non trivial Vacuum

Bulk state 
(scattering state)

Edge state
(Bound state)

Control
with 

each other

Universality
Bulk-Edge correspondence

Particles in the gap

QHE, Spin chains, Graphene, QSHE, ...

Edge is topological

How to understand gapped quantum liquids ?

 Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993)

c.f. holographic principle



Edge is topologicalEdge states of the topological insulators

L R

En
er

gy

ky

2D QSH state on a cylinder

x

y
What does it mean ?

Let me explain !



Topological characterization by edge states
Quantization of Hall conductance (graphene as an example)

Laughlin argument & edge states

Topological number & edge states

Topol. char. by edges



Topol. char. by edges

R. Willett et al.

’80, K.v.Klitzing et al.

V
topologically cylinder



Topol. char. by edges

Anomalous QHE of gapless Dirac Fermions

Novoselov et al. Nature 2005

Zhang et al. Nature 2005

Graphene

�
xy

=
e2

h
(2n+ 1), n = 0,±1,±2, · · ·

= 2
e2

h
(n+

1

2
)



Stability of the quantized Hall Conductance
Gauge invariance and quantization of    

L R �Iy

Vx

�xy Laughlin ‘81

flux quantum

adiabatic process to increase �

Gauge transformation

A⇥ A⇥ = A +⇤�, �� =
�

�
(A⇥ �A)

⇥ ⇥ ⇥⇥ = ei2⇥��/�0 ⇥

�� =� 0 =
e

h
�⇥ ⇥� = ⇥

Byers-Yang formula

All states are invariant up to phase after the process: 
Some      states are carried from L to the R  n

Iy =
�E

�⇥
=

neVx

h/e
= n

�e2

h

⇥
Vx = �yxVx

�⇥ = ⇥0 =
h

e
, �E = n · eVx

�yx

one particle state
x

y

: generic integer ( but  undetermined )n

Topol. char. by edges



Stability of the quantized Hall Conductance
Edge states and Hall conductance �xy Halperin ‘82

Landau gauge in yE

EF

Without boundaries

⇥x⇤ � �2Bky
ky =

2�

Ly
(ny +

�
�0

) ny = 0,±1,±2, · · ·

EF

With boundaries E

Left edge Right edge

Edge potential
Gapless excitations

� = 0

L

R
H2D =

�

ky

H1D(ky)

ky

H1D(ky)
: harmonic osc. centered at 

Laughlin’s undetermined       : # of Landau Levels below n EF

Edge states are essential in the QHE !

� =� 0

Left edge Right edge

2 states are carried from L to R

Topol. char. by edges



Quantum Hall edge states : Lattice electrons on cylinder

Y. H, Phys. Rev. B 48, 11851–11862 (1993)

C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky, H. Schweizer: 
Evidence of Hofstadter's Fractal Energy Spectrum in the Quantized Hall Conductance. 
Phys. Rev. Lett. 86(1), 147-150 (2001). 

(m,n) (m+1,n)

(m+1,n+1)(m,n+1)

a

a

!
x

m,n+1

!
x

m,n

!
y

m+1,n
!
y

m,n

Experimentally realized

In gap states as the edge states
B

V

II yy

x

II yy

Topol. char. by edges



Edge states are topologically stable Topol. char. by edges

Edge states are chiral 

One way going !!

Cyclotron motion  by Lorentz force F = �ev ⇥B

Currents are canceled in the bulk but induces a boundary current

Edge states

Cannot stop !

No back scattering

Stable for impurities !!

X Topological stability 
of 

Chiral edge states



Edge States of Graphene

Dirac Type 
Quantization

L R
x

y

� = 1/21

+3

-1

-3

+1

+12

+1
+2

+4
+3

+5
+6
+7
+8
+9
+10
+11

+13

-12

-1
-2

-4

-3

-5
-6
-7
-8
-9
-10
-11

-13

Standard
Quantization

Standard
Quantization (hole)

ky

Topol. char. by edges

R L

R L



Edge States of Graphene

� = 1/51

Edge States being 
consistent with

Dirac Type 
Quantization

L R
x

y

+1

+3

+5

+9
+7

+11

-1

-3

-5

-9
-7

-11

ky

Topol. char. by edges



Hall Conductace vs chemical potential
 Accurate Hall conductance over whole spectrum

-3 -2 -1 1 2 3

-30

-20

-10

10

20

30-2 2

� = 1/31

D
(E
)

�
x
y
[e

2
/h

]

µ/t, t � 1[eV] for graphene

Electron Like
in this region

Hole Like
in this region

Dirac Like
in this region

Hatsugai-Fukui-Aoki ’06

single band model



Hall Conductace vs chemical potential
 Accurate Hall conductance over the whole spectrum

-3 -2 -1 1 2 3

-30

-20

-10

10

20

30-2 2

� = 1/31

D
(E
)

�
x
y
[e

2
/h

]

µ/t, t � 1[eV] for graphene

Quantum phase transition
at the van Hove Energies

Singularity breaks 
Topological Stability

Dirac behavior
in this region

E(kx, ky) = ±
�

(1 + cos kx + cos ky)2 + (sin kx + sin ky)2

Electron Like
in this region

Hole Like
in this region



How the edge states determine      ?
How to calculate       by the edge states?�xy

Topol. char. by edges



Laughlin’s Argument & Edge States

Gauge Invariance & Byers-Yang’ Formula

Quantization of         by Edge states

B

V

II yy

x

II yy

Iy =
�E

�⇥
= �xyVx Byers-Yang

�⇥ = ⇥0 =
h

e
Adiabatic increase by 

Insulating System 
goes back 

to the Original State
:  assume n electrons are carried 

from the left to the right
�E = neVx

�xy =
e2

h
n

n is an integer
 but

unknown
�xy

Laughlin ‘81

Topol. char. by edges



EF

L R R R

ky

Adiabatic Charge Transfer B

V

II yy

x

II yy

L R R R
EF

ky

1 Electron is carried from the Left 
to the right in this case �xy =

e2

h
· 1

�⇥ = ⇥0 =
h

e

ky = 2�
n + �

�0

Ly
, n : integers

Y.H., Phys. Rev. B 48, 11851 (1993)

Topol. char. by edgesLaughlin’s Argument & Edge States



Bulk --- Edge Correspondence ?

0 0.2 0.4 0.6 0.8 1

-3

-2

-1

0

1

2

3

E

ky

=1/5(a)

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

E

ky

=1/21(b)

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

E

ky

=1/51(d)

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

=1/21

E

ky

(c)
Near Zero
�xy

bulk = �xy
edgeNumerically



Analytical Consideration 
of

 Edge states in Graphene

Followed by the discussion on a square lattice

R L

Y.H., Phys. Rev. B 48, 11851 (1993)
Phys. Rev. Lett. 71, 3697 (1993)

R
+

-R

YH, T. Fukui & H. Aoki,  Phys. Rev. B74, 205414 (2006)



Width (    ) dependence of the spectrum
1D system with Boundaries of length 

Lx

Lx

Infinite size limit 
with Boundaries

: independent of
Lx ⇥ �1, modQ

� = P/Q

Lx

EB

R L

L

R

Q=3

Q=2q: graphene

Lx = 5 · Q� 1 = 14
Lx = 4 · Q� 1 = 11

Lx = 6 · Q� 1 = 17
Lx = 7 · Q� 1 = 20

Lx =⌅ · Q� 1⇤⌅

EB

EB

Ly

Lx



Edge State and Bloch State
reduced 1D system and transfer matrix

H =
�

ky

H1D(ky)

|E, ky� =
⇤

jx

�
�•(E, jx, ky)c†•(jx, ky)|0� + ��(E, jx, ky)c†�(jx, ky)|0�

⇥
,

H1D(ky)|z, ky� = z|z, ky�, z = E M⇥•(jx) =

⇤
E

t�⇥•(jx) � t•⇥(jx�1)
t�⇥•(jx)

1 0

⌅

M•⇥(jx) =

⇤
E

t�•⇥(jx) � t⇥•(jx)
t�•⇥(jx)

1 0

⌅

t⇥•(jx, ky) =t
�
1 + eiky�i2�⇥jx

⇥

t•⇥(jx, ky) =t
⇧
1 + (t⌅/t)eiky�i2�⇥(jx+1/2)

⌃

Transfer matrix

Mt(jx) = M•�(jx)M�•(jx)

Boundary Conditions

�(jx + 1) = Mt(jx)�(jx)

�(jx) =
�

�•(jx)
��(jx � 1)

⇥

Edge State  

�E(0) =

„
1
0

«
, �E(q) =

„
�
0

«

M = Mt(q � 1)Mt(q � 2) · · · Mt(0)

Bloch State  
�B(q) = M�B(0) = ��B(0)

|�| = 1

How these two are related ??

Y.H., Phys. Rev. B 48, 11851 (1993)
Phys. Rev. Lett. 71, 3697 (1993)



Hofstadter Problem & Graphene under magnetic field

In continuum, 2D =       (1D harmonic oscillators with parameter     )  

Bloch electrons, 2D =     (1D Harper equation with parameter     ) 

�

ky�

ky

ky

ky

En
er

gy

Landau gauge

�

B

V

II yy

x

II yy

(m,n) (m+1,n)

(m+1,n+1)(m,n+1)

a

a

!
x

m,n+1

!
x

m,n

!
y

m+1,n
!
y

m,n

Topol. char. by edges



Edge State and Bloch State

Edge state :     bound state
Bloch state: scattering state

Bloch electrons, 2D =     (1D Harper problem with parameter     ) ky

These two can be treated in a unified way 
by considering complex energy 

bound state
scattering state

standard quantum mechanics

unified description

E =
⇥2k2

2m

�
< 0 k = i�, ⇥ � e��x

> 0 k ⇥ R, ⇥ � eikx

As for the 1D Harper equation, 

E = z (complex energy )

E > 0
z = E � i0
E < 0

� � ei
�

2mE x/�

energy of the bound state is in the gap region E<0

branch cut

�
Topol. char. by edges



Hofstadter Problem & Graphene under magnetic field

In continuum, 2D =       (1D harmonic oscillators with parameter     )  

Bloch electrons, 2D =     (1D Harper equation with parameter     ) 

�

ky�

ky

ky

ky

Complex energy surface
of 

the Harper eq. En
er

gy

Landau gauge

�

q Bands and g=q-1 gaps

Riemann surface 

with g handles

R
+

-R

B

V

II yy

x

II yy

(m,n) (m+1,n)

(m+1,n+1)(m,n+1)

a

a

!
x

m,n+1

!
x

m,n

!
y

m+1,n
!
y

m,n

Topol. char. by edges



R
+

-R

�E

Complex Energy surface
of Harper eq.

Quantized Hall conductance by the 
topological number of edge states

genus g=q -- 1: 
number of the gaps

� = p/q

�
xy

edge =
e2

h
I
j

Y. Hatsugai, Phys. Rev. B 48, 11851–11862 (1993)

Ij : Winding # of the edge state energy around the handle 
(energy gap) on the complex energy surface

Edge states are topological
Topol. char. by edges

Topological number



Edge States of Graphene

� = 1/51

Edge States being 
consistent with

Dirac Type 
Quantization

L R
x

y

+1

+3

+5

+9
+7

+11

-1

-3

-5

-9
-7

-11

ky

Topol. char. by edges



Q=3 energy bands: Q=3 branch cuts

�
(z � �1)(z � �2) · · · (z � �2Q�1)(z � �2Q)

Construction of the Riemann surface
Glue 2 complex planes

R+

Q=3

R -

� = 1/3
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Construction of the Riemann surface
Glue 2 complex planes with Q branch cuts

R
+

-R

� = P/Q, Q = 3

Q=3 energy bands: Q=3 branch cuts

�
(z � �1)(z � �2) · · · (z � �2Q�1)(z � �2Q)

g=Q-1 holes



Wave function & Riemann Surface
Zeros of the Bloch fn. defines the Edge State Energies

Changing                , the zero of the Bloch function 
 in the j-th gap makes  a closed loop on 

Energy bands  Branch cuts
Energy gaps Holes

W. fn. is localized at 

the right edge
the left edge

The zero of the Bloch fn. is on 

the upper Riemann Surface R+

the upper Riemann Surface R---

ky � [0, 2�]

As for fixed ky of the 1D-Harper systems
�g

�g

� = P/Q
g = Q� 1



Riemann surface & Laughlin’s Argument

L R R R
EF

ky

R-

R+

1

L R

L

I(�j , L
j
edge) = +1, j = 1

Winding number
or

Intersection number with 
canonical loop

Y.H., Phys. Rev. B 48, 11851 (1993)

L  to R

R  to R

1 state is carried from the L to R

Topological number



R-

R+

1

Which contribure to the Chern number of the Bulk

Y.H., Phys. Rev. Lett. 71, 3697 (1993)＋ ー

---

---
+ -th Band

-th gap

-th gap

j

j

(j � 1)

Cj = Ij � Ij�1
Chern # = winding # Difference between the neighboring gaps�

j=1,···⇥
Cj= I⇥, (� I0 = 0)

�xy
bulk = �xy

edge

Bulk-Edge Correspondence in their topological numbers

�g



R-

R+

1

Which contribure to the Chern number of the Bulk

Y.H., Phys. Rev. Lett. 71, 3697 (1993)＋ ー

---

---
+ -th Band

-th gap

-th gap

j

j

(j � 1)

Cj = Ij � Ij�1
Chern # = winding # Difference between the neighboring gaps�

j=1,···⇥
Cj= I⇥, (� I0 = 0)

�xy
bulk = �xy

edge

Bulk-Edge Correspondence in their topological numbers



L R R R
EF

ky

R-

R+

1

The touching point makes a vortex in the eneryg band

Which contribure to the Chern number of the Bulk
Cj

FS = I(�j , C
j
edge)

Y.H., Phys. Rev. Lett. 71, 3697 (1993)



Edge states & Intersection number 
of Edge State Loops

0 0.2 0.4 0.6 0.8 1
-3

-2

-1

0

1

2

3

� = 1/4 � = 1/7 � = 1/21

Imagine loops on the Riemann surface 

�xy
bulk = �xy

edge



Edge states of Z2 topological phase
Spin conserved case

chiral edge states to helical ones

Kramers degeneracy

Z2 characterization by the edge states

Z2 edge states



What’s this

En
er

gy

ky ⇡�⇡

Z2 edge states

Edge states are not 
chiral, but helical

2D Quantum Spin Hall state

�H(k)��1 ⇠= H(�k)

�k+k

Not independent
Correlated

Generically 
TR is broken in 

momentum space

TR is OK
at special momentum

⇡ 0
H(0) = H(�0)

H(⇡) = H(�⇡)

and



En
er

gy

ky ⇡

En
er

gy

ky ⇡

ky

En
er

gy

⇡

Identification of edge states (QSHE)

LR

L

RL
L

L R

R
L

L

R R L
L

L

R
L

L

RRL
L

L

spin conserved case

R

L
L

L L
L

R
R

Z2 edge states

upspin down spin

decompose into up & down

I1 = 1

I2 = 2
I2 = �2

I1 = �1



⇡

En
er

gy

ky�⇡

Spin Conserved

R R

LL

LL

RR RRL L
L

LL

L

With Spin Orbit

L L

L L L L

LL
R R

RR
RR

En
er

gy

ky ⇡�⇡

Z2 edge states
Identification of edge states (QSHE)

I1 = 1

I2 = 2
I2 = �2

I1 = �1
Stable

Unstable

Adiabatic modifications

Any topological protection ?Kramers degeneracy at TR invariant momenta



L

L
L

L
R

R
R L

With Spin Orbit

ky ⇡

R

R
R

R edge

Stable

Unstable

⇡ky

Kramers 
degeneracy

Kramers 
degeneracy

Identification of edge states (QSHE)
Z2 edge states

L

L
L

L
Stable

Unstable

L

⇡ky

Kramers 
degeneracy

Kramers 
degeneracy

L edge

3D



Topologically protected edge states

0 ky ⇡

TR invariant 
Point

TR invariant 
Point

0 ky ⇡

TR invariant 
Point

TR invariant 
Point

Trivial phase Non-trivial phase

Clearly two choices

En
er

gy

En
er

gyFeatureless Bulk Featureless Bulk

Z2 topological phase

Z2 edge states

Edges characterize the 
featureless bulk

Hasan-Kane, RMP (2010)



Spin Hall edge states

Konig, Wiedmann, Brüne, Roth, Hartmut Buhmann, 
Molenkamp,Qi and Zhang, Science 318, 776 (2007)

2D

3D

....

Z2 edge states



Zero mode localized states ??

Zigzag edges

Armchair edges

Zero modes exist

No zero modes

Fujita et al., J. Phys. Soc. Jpn. 65, 1920 (1996)

Zigzag edgesArmchair edges

Fujita et al.,’96

Another example: edge states graphene Z2 edge states



It’s real ! 

First principle calculation STM image

Okada and Oshiyama, 
Phys. Rev. Lett. 87,  146803 (2001)

Kobayashi et al, 
Phys. Rev. B71,  193406 (2005)

Another example: edge states Z2 edge states



Zero Bias Conductance Peak
. in Anisotropic Superconductivity

Zero Energy Boundary States
. of Anisotropic Superconductivity

.

Tanaka-Kashiwaya

L. J. Buchholtz,G. Zwicknagl, Phys. Rev. B 23, 5788 (1981) (p wave )
C.-R. Hu, Phys. Rev. Lett. 72, 1526 (1994) (d wave )
S. Kashiwaya, Y. Tanaka, Phys. Rev. Lett. 72, 1526 (1994)
M. Matsumoto and H. Shiba, JPSJ, 1703 (1995)
(fig.) M. Aprili, E. Badica, and L. H. Greene,Phys. Rev. Lett. 83, 4630 (1999)

zbcp – p. 3

d-wave superconductivity

Another example: edge states Z2 edge states



One way mode in photonic crystals

Nature 461 , 772 (2009)

Z. Wang, Y. Chong, J.D.Joannopoulos, M. Solijacic

Z2 edge statesAnother example: edge states



Surface states of semiconductor 
without inversion symmetry

GaAs (111) Si 7×7

Non topological generically
Implicated by the bulk polarization

Z2 edge statesAnother example: edge states



Edge States in Condensed Matter Physics

Bound states in quantum mechanics

Surface states in Semiconductors

Solitons in polyacetylene

Edge states in quantum Hall effects

Local moments in integer spin chains near the impurities

Zero bias conductance peaks of the d-wave superconductors

Zero energy localized states of graphene

Spin Hall Edge states

Hu, ‘94

Wang et al., PRL 100, 013905 ‘08

Scarola-Das Sarma., PRL 98, 210403 ‘07

more possibilities

Levinson’s theorem, Friedel sum rule

Fujita et al.‘96

Kane-Mele‘95

Kennedy ‘90 Hagiwara-Katsumata-Affleck-Halperin-Renard ‘90

Halperin ‘82 Hatsugai ‘93

Su-Schriefer-Heeger ‘79

Ryu-Hatsugai‘02

Edge states in 2D cold atoms optical lattices

One-way edge modes in gyromagnetic photonic crystals

Again its a zoo

Z2 edge states



Bulk-Edge correspondence: Dirac fermions

Universality in the zero modes
of Dirac Fermions

Su-Schriefer-Heeger ’79
Witten ’81

1D Dirac fermions :

2D Dirac fermions
Graphene d-wave superconductor surfaces of 3D TI ...

zero mode localized states

quantum Hall edge state

B = 0

B 6= 0Edge states: 



Edge States

Universality in the zero modes
of Dirac Fermions

Fractional charge:
Jackiw ’84

2D Dirac fermions :

Zero mode localized states ??
Graphene d-wave superconductor

2D CuO2 

YH, ’09 (review)



Analogy between graphene &  d-wave superconductor



Universality of Zero Energy Edge States

1.Zero energy edge states of graphene
Boundary Magnetic moments of graphene

2.Andreev bound states of d-wave superconductors
Zero bias conductance peak

These 2 systems are 
topologically equivalent

{�,H} = �H + H� =0 , �2 = 1
chiral symmetry��

�
(A-B sublattice

 symmetry)

:Bipartite �
(Real 
  Order parameter)

:Time Reversal 

d-wave superconductor

4 Dirac cones

graphene

2 Dirac cones

Spontaneous breaking of 
these chiral symmetries
: Peierls instabilities of

Flat (edge) bands

Boundary 
magnetic 
moments

Spontaneous local  
flux generation 

near defects

 ‘02---’04 S. Ryu & YH 

Symmetry protected
 Zero modes of Dirac fermions
:1D Flat Band of edge states



When the zero modes exist ?

⇤A =⇥�(k)|⇤⇧k�(k)⇤

Determined by the Berry phase of the bulk (without boundaries) 

S.Ryu & Y.Hatsugai, Phys. Rev. Lett. 89, 077002 (2002)
Y.Hatsugai., J. Phys. Soc. Jpn. 75  123601 (2006)
Kuge, Maruyama, Y. Hatsugai, arXiv:0802.2425

Edge states with boundaries

� =
�

A =
�

d⇧k · ⇧AZak

{�,H} = �H + H� =0

Require Local Chiral Symmetry
 (ex. bipartite ) 

Quantized 

� =
⇥

A =
�

⇥
0

: There exists odd number of zero modes

Zero energy localized states EXIST              � = ⇥

Bulk-edge correspondence: “Bulk determines the edges”

Lattice analogue of 
Witten’s SUSY QM

http://arxiv.org/abs/0802.2425
http://arxiv.org/abs/0802.2425


T. Kariyado & Y.Hatsugai, arXiv:1505.06679

Manipulation of Dirac Cones 
                              in Mechanical Graphene

Spring-mass model on honeycomb lattice

Classical system governed by Newton law



Dirac Cones in phonon spectrum 

Dirac cones appear and manipulated by spring tension

: controled by spring tension⌘



Dirac cones appear and manipulated by spring tension

: controled by spring tension⌘
Phonon spectrum on cylinder

Edge states



With rotation: time-reversal symmetry breaking
      Coriolis force (effective magnetic field)

Topological change associated with Chern number jumps



Edge waves with various shapes

Time evolutions in real space 



With rotation: time-reversal symmetry breaking
      Coriolis force (effective magnetic field)

Topological change associated with Chern number jumps



Bulk Gap
Non trivial Vacuum

Bulk state 
(scattering state)

Edge state
(Bound state)

Control
with 

each other

Universality
Bulk-Edge correspondence

Particles in the gap

Edge states are 
topological order parameters 
accessible by experiments !

YH, ’93

Even in classical world !



Use of the edge states

Novel quantum degrees 
with topological protection by bulk

localized particles in the gap

Edge states



ConclusionThank you

Edge states are everywhere 
in 

condensed matter physics

Edge states are useful for 
applications 

in quantum physics /devices



Summary
2003 Talk at MIT



Summary
2011 at Nagano, 2012 Hiroshima

Edge states are everywhere 
in 

condensed matter physics

2010 at Orland

Topology is now everywhere 
in 

condensed matter physics



Summary
2015 at Chiba

Topology

Edge states

Symmetry

Condensed matter physics

Another physical way to look at matter !

Thank you !


