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Why do we care topological phases ?

Ginzburg-Landau theory 

Local order parameter:

Symmetry breaking

Characterization of phases

hS(r)i

hS(r)i 6= 0

too much success

Magnetism, superconductivity, charge/orbital ordering ...

Is this satisfactory ?
Quantum/Spin liquids

Absence of symmetry breaking
need something more:

Topological !



Quantum/Spin Liquids ?
Quantum Liquids in Low Dimensional Quantum Systems

Low Dimensionality, Quantum Fluctuations
No (fundamental) Symmetry Breaking  
No Local Order Parameter

Quantum Liquids in Condensed Matter
Integer & Fractional Quantum Hall States
Dimer Models of Fermions and Spins
Half filled Kondo Lattice 
Kitaev model & Levin-Wen model       
Anisotropic superfluids/superconductors (ABM, BW, p-wave )
Graphene, Weyl semi-metal
Topological insulators : quantum spin Hall states
Photonic crystals & Some of cold atoms ..

New Type of Order
Topological Order!

X.-G.Wen ’89
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A phase without symmetry breaking is interesting ?

Quantum Liquids are Featureless !!

Too much general is boring !
Nothing to be characterized 
              in sufficiently high dimensions

SYMMETRY & DIMENSION constrains !

Symmetry protection of 
Topological Phases 

without symmetry breaking

Are there something to be learned ?



1.Discrete symmetry
Time reversal
Charge conjugation
Space inversion
Reflection

2.Gauge symmetry
U(1)   : QHE  (TR ×) 
Sp(1) : QSHE (TR ○)

topologically single phase (too simple ?)

With some symmetry A, B, C

Chen-Gu-Wen, ’10YH, ’06
Pollmann et al., ’10

“TRULY GENERIC” phase without any symmetry breaking



How to characterize the phase 
                      Without Symmetry Breaking ?

GappedGapless

Topological !

Stability against for perturbation !

Nodes structures

Protected by symmetry

Adiabatic invariants
point nodes, line nodes,... Chern numbers, ZQ Berry phases

Bulk-edge correspondence
geometrically induced gapless excitations in gapped phase 

✓ ✓ ✓

✓

Try to show overview 
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Gapless Topological !

Nodes structures
protected by symmetry

point nodes, line nodes,...

gapless : generic 2 levels near the gap

H(k) = R(k) · � =
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3 parameters
expanded by Pauli matrices

von Neumann-Wigner ’29
Berry ’84

To be gapless: 3 parameters to be tuned
co-dimension=3 (3 conditions)

1
2

2-D closed surface in 3D

T 2 R(T 2)
2D Brillouin zone

:periodic in kx & ky

2D Torus
map

ex. 

R = 0gapless point

Single particle problem (mean field)

E = ±|R(k)|



2D examples
1

2

2D Brillouin zone d-wave superconductivity

H(k) = R(k) · � =
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YH-Ryu, ’02

p-wave superconductivity



ABM states & Dirac mono pole
1

2

2D Brillouin zone

3rd momentum: time line

co-dimension 3

In 3D,  3--3=0 : point nodes

topological stability

Anderson-Brinkman-Morel (ABM) phase of He

H(k) = R(k) · � =
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YH-Ryu-Kohmoto, ’04



Geometrical meaning of Chiral symmetry 

{He↵ ,
9�} = He↵� + �He↵ = 0

: real          :  Time reversal & Inversion
� =

⇢
�z

�y

: bipartite lattice & hopping between them

He↵

Rz = 0

Ry = 0

� = n� · � {He↵ , �} = 0 � n� ? R

R(k)

n�
X

Y

He↵ ! 0, k ! k0Zero gap condition: Dirac dispersion

�2 = 1

E = ±|R(k)|

Generically

H(k) = R(k) · � =
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Chiral Symmetry

{H,� �} = 0, �2 = 1

co-dimension of Dirac cones=2

graphene, d-wave superconductor in 2D

Chiral symmetry



Topological stability of the Doubled Dirac cones

n γ
n γ

R R 

1
2

2-D closed surface in 3D
T 2

Generically

R(T 2)

{H, �} = 0

c.f. 4D graphene & chiral symmetry, M. Creutz ’08

H(k) = R(k) · � =
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2D Brillouin zone :periodic in kx & ky

2D Torus map

(R
x

, R
y

, R
z

)3D

Chiral symmetry � n� ? R

� = n� · � is on a plane normal to R(k) n�
R(T 2) is collapsed on the plane

Topologically stable 

Gepped :
 perturbation is too large

=(0,0,0)

doubled Dirac cones

also with TR inv. 5D YH, ’10

“balloon”

“collapsed balloon” “collapsed balloon”

2D Nielsen-Ninomiya theorem

YH-Fukui-Aoki, ’06



Graphene with deformation
1

2

2D Brillouin zone

deformation of the system: time line

d-wave superconductor
In 2D with chiral symmetry,  2--2=0

co-dimension 2

 Dirac cones of graphene

topological stability in 2D

YH-Fukui-Aoki, ’06



c.f. Blount’85

YH-Ryu-Kohmoto, ’04



Gapless Topological !

Nodes characterize the phase topologically

co-dimension 3

d-wave superconductor

In 3D,  3--3=0 : point nodes :ABM state of He
 Weyl semi-metal

In 3D with TR invariance,  3--2=1 : line nodes super
Blount’85

In 2D with chiral symmety
          with TR invariance  

with TR invariance/chiral symmetry

co-dimension 2

: Dirac cones of graphene

Generic

Volovik ’97

YH-Ryu-Kohmoto ’04
YH-Ryu’02

YH-Ryu & Ryu-YH ’02

topological stabile Dirac point Burkov-Balents ’11

2--2=0
Wallace’47
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Are insulators boring ??
Insulators : Non metal, gapped 

Band insulators
Superconductors
Integer & Fractional Quantum Hall States
Integer spin chains (Haldane)
Dimer Models (Shastry-Sutherland)
Valence bond solid (VBS) states
Half filled Kondo Lattice       
Spin Hall insulators

Absence of low energy excitations
Energy gap above the ground state

Lots of variety
Absence of fundamental symmetry breaking (mostly)

No responses against for small perturbation

Gapped: Nothing in the gap : cf. Nambu-Goldstone boson
No low lying excitations 

No Response against small perturbation

?? ？？？
gapless modes:

acoustic phonons
zero sounds
spin waves

Gapped



Adiabatic invariants

Gapped Topological !

protected by symmetry
Chern numbers, ZQ Berry phases

Chern numbers:
Intrinsically quantized

 Quantum spin chains,
 Spin-QHE ...

Symmetry protected quantization
QHE ... 

Berry phases & generalization:

1st, 2nd, 3rd,....
Z

Z2

Parameter dependent hamiltonian        Berry connection

�1 = � 1

2⇡i

Z

M1

A

C1 = � 1

2⇡i

Z

M2

F

0 or 1/2

...,-2,-1,0,1,2,...



Adiabatic invariants

Gapped Topological !

protected by symmetry
Chern numbers, ZQ Berry phases

Adiabatic heuristic (Wilczek)

Flux attachment 

d(
✓

⇡
+

1

⌫
) = 0

Fractional QHE

Connect states by
       adiabatic process



“Classical” Observables in Quantum Physics

with N fold degeneracy

Classical vs Quantum 

Unitary Invariant ?

Ocl : H(energy), p(momentum), n(r)(charge density) · · ·
quantizationOcl �⇥ O : Hermite Operator

⇥O⇤G = ⇥G|O|G⇤ = ⇥G�|O|G�⇤ = ⇥O⇤G�

|G�⇤ = |G⇤ei�
:Independent of the phase

� = (|G1⇥, · · · , |GN ⇥)

⇥O⇤� =
1
N

�

i

⇥Gi|O|Gi⇤ =
1
N

Tr�†O�

=
1
N

Tr��†O�� = ⇥O⇤��

� = ��U , U : Unitary
YES!



“Quantum” Observables !
No classical Correspondences
Quantum Interferences between 2 different states 

Aharonov-Bohm Effects
Geometrical Phases
Berry connection & Phases

Berry connection as quantum interference

⇥G(tA)|G(tB)⇤ �= ⇥G�(tA)|G�(tB)⇤
|G(t)⇤ = |G�(t)⇤ei�(t)

Unitary Invariant ?

�G|G + dG⇥ = 1 + �G|dG⇥
A = �G|dG⇥

i� =
�

A

:Berry Connection

:Berry Phase           

NO ! Phase dependent



H(x) = (x)(x) (x)

Berry Connection?

A� = ��|d�� = ��| d
dx��dx.

|�(x)� = |��(x)�ei�(x)

A� = A�
� + id� = A�

� + i
d�
dx

dx

(Abelian)

Gauge Transformation

x y

parameter space
Eigenvectors ( space )  
with Parameters

Information between nearby states
Berry connection :

gauge potential

Fiber Bundle

H(x) and H(y) are independent

Berry ’84

phase change=gauge transformations

phase fix = gauge fix



Parameter Dependent Hamiltonian

Berry Connections
Berry Phases
Phase Ambiguity of the eigen state

Berry phases are not well-defined without

                                         specifying the gauge

Well Defined up to mod        

Berry phase and its gauge dependence

A� = ��|d�� = ��| d
dx��dx.

|�(x)� = |��(x)�ei�(x)

A� = A�
� + id� = A�

� + i
d�
dx

dx

(Abelian)
i�C(A�) =

�

C
A�

�C(A�) = �C(A��) +
�

C
d�

Gauge Transformation

2� � (integer) if ei� is single valued
2�

�C(A�) � �C(A��) mod 2�

H(x)|�(x)� = E(x)|�(x)�, ��(x)|�(x)� = 1.
H(x) = (x)(x) (x)



Anti-Unitary Operator 

Berry Phases and Anti-Unitary Operation
A� = ��|d�� =

�

J

C�
JdCJ

A�� = ���|d��� =
�

J

CJdC�
J = �A�

Anti-Unitary Operator and Berry Phases

�

J

C�
JCJ = ��|�� = 1|�� =

�

J

CJ |J�

|��� = �|�� =
�

J

C�
J |J��, |J�� = �|J�

�C(A��) = ��C(A�)

� = KU�, K : Complex conjugate
U� : Unitary (parameter independent)

(Time Reversal, Particle-Hole)

�

J

dC�
JCJ +

�

J

C�
JdCJ =0



Anti-Unitary Symmetry 

Invariant State   

ex. Unique Eigen State

To be compatible with the ambiguity, 

  the Berry Phases have to be quantized as

Anti-Unitary Invariant State and
 Quantized Berry Phases

[H(x),�] = 0

��, |��� = �|�� = |��ei�

� |�� Gauge 
Equivalent(Different 
Gauge)

�C(A�) = ��C(A��) � ��C(A�), mod2�

�C(A�) =
�

0
�

mod2�



Generic Heisenberg Models with possible frustration

U(1) twist as a Local Probe to define Berry Phases

H =
�

ij

JijSi · Sj

H(x = ei�)

C = {x = ei�|� : 0� 2�}

Si · Sj �
1
2
(e�i�Si+Sj� + e+i�Si�Sj+) + SizSjz

Parameter dependent Hamiltonian

Define Berry Phases  by the Entire Many Spin Wavefunction

�j, Sj � ��1
T Sj�T = �Sj

Time Reversal Invariant

�C =
⇥

C
A� =

⇥

C
�⇤|d⇤⇥ =

�
0
⇥

: mod 2⇥
Quantization 

Time Reversal InvarianceExcitation Gap! 

Z2 Berry phase as a topological order parameter

YH, J. Phys. Soc. Jpn. 75, 123601, ’06

Z2 Berry phase

Topological order parameter at the link <ij>



Short range entangled states

Ex.1) AKLT state

Ex.2) Collection of singlets

(1,1)

Something complicated
but gapped

many-body gap
small 

gapped integer spin chain

Quantum liquids



Short range entangled states

Something complicated
but gapped

many-body gap

Adiabatic deformation !
gap remains open 

Quantum liquids
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Short range entangled states

Something very simple
& gapped

many-body gap

Adiabatic deformation !
gap remains open 

Decoupled !

big !

Quantum liquids



Short range entangled states
Adiabatic process to be decoupled: gap remains open 

Collection 
of 

local quantum objects

Def. of short range entangled state

Quantum liquids



How to characterize local object ?
Consider a gauge transform at some site



How to characterize local object ?
If decoupled, the twist by the transformation is gauged away !

z

x

y

It characterizes locality of the quantum object !

Consider a gauge transform at some site

How to see this locality by skipping the adiabatic deformation ?

Question ?

Calculate a topological invariant as an adiabatic invariant

Answer !



Local Singlet Pair with the twist

Berry phase of the twisted singlet pair

Z2 Berry phase of Singlet Pair
BA

A = �†d�

� =

⇤
⌃⌃⇧

⌃⌃⌅

i 1⇥
2

eiArg (a�bei�)

�
1

�e�i�

⇥
|a| > |b|

i 1⇥
2

eiArg (b�ae�i�)

�
�ei�

1

⇥
|a| < |b|

: a, b � C(gauge parameters)

� = �A � �B

� = �i

⇥
A =

�
�⇥ |a| > |b|
⇥ |a| < |b|

�singlet pair = ⇥ mod2�
A singlet does not carry spin 
       but does the Berry phase 

| i = 1p
2
(ei✓/2|"A#Bi � e�i✓/2|#A"Bi)

H
AB

= (Sx

A

, Sy

A

, Sz

Z

)

0

@
cos ✓ � sin ✓
sin ✓ � cos ✓

1

1

A

0

@
Sx

B

Sy

B

Sz

B

1

A

=
1

2
(e�i✓S+

AS�
B + ei✓S�

AS+
B ) + Sz

AS
z
B

⇡



Quantization of the Berry phases protects from 

continuous change

Adiabatic Continuation & the Quantization

Adiabatic Continuation in a gapped system

Renormalization Group in a gapless system
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Metal/gapped : physicists & chemists ?

Covalent molecular orbital

physicists 

Sorry if I’m wrong 

itinerant electrons



Covalent molecular orbital

make energy band
metal

physicists 

Sorry if I’m wrong 

itinerant electrons

hopping

Metal/gapped : physicists & chemists ?
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itinerant electrons

Opening  gap 
stabilize

hopping
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Peierls instability

physicists 

Sorry if I’m wrong 

itinerant electrons

make bands of 
molecules

stabilize

chemists
form molecules first 

Adiabatic process
Insulator

non orthogonality
short range entanglement 

EF

Metal/gapped : physicists & chemists ?

Think locally when gapped!
molecules, singlet pairs, bonds

chemist way: BETTER !



Examples in 1D, 2D, 3D and ...
Integer spin chains with dimerization
Random hopping models

Orthogonal dimers in 2D
BEC-BCS crossover at half filling

Dimerization transition on Kagome & Pyrochlore

Validity of our general scheme



Strong bonds

:       bonds

AF bonds

:       bonds

1D S=1/2 chains with dimerization

AF-AF

Ferro-AF

AF-AF case

�

F-AF case

�Hida

Y.H., J. Phys. Soc. Jpn. 75  123601 (2006)
H =

X

hii

JiSi · Si+1

テキスト



S=1

H = J
�

�ij⇥

Si · Sj + D
�

i

(Sz
i )2

(Si)2 = S(S + 1), S = 1

D < DC

D > DC

Characterize the Quantum Phase Transition

Y.H., J. Phys. Soc. Jpn. 75  123601 (2006)

Heisenberg Spin Chains with integer S

Haldane phase

Large D phase



S=1,2 dimerized Heisenberg model

J1 = cos �, J2 = sin �

2

the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)⟩ of H(φ) as
A(φ) = ⟨GS(φ)|∂φ|GS(φ)⟩. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
undefined if the gap between the ground state and the
excited states vanishes while varying the parameter φ.
We use a local spin twist on a link as a generic param-
eter in the definition of the Berry phase [1]. Under this
local spin twist, the following term S+

i S−
j + S−

i S+
j in

the Hamiltonian is replaced with eiφS+
i S−

j + e−iφS−
i S+

j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = ⟨GS(φn)|GS(φn+1)⟩
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during

 0  0.5  1  1.5  2

(b)

(c)

(4,0) (3,1) (2,2) (1,3) (0,4)

(a)
(2,0) (1,1) (0,2)

FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)⟩ of H(φ) as
A(φ) = ⟨GS(φ)|∂φ|GS(φ)⟩. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
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We use a local spin twist on a link as a generic param-
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j + S−

i S+
j in
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j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = ⟨GS(φn)|GS(φn+1)⟩
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during
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FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)⟩ of H(φ) as
A(φ) = ⟨GS(φ)|∂φ|GS(φ)⟩. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
undefined if the gap between the ground state and the
excited states vanishes while varying the parameter φ.
We use a local spin twist on a link as a generic param-
eter in the definition of the Berry phase [1]. Under this
local spin twist, the following term S+

i S−
j + S−

i S+
j in

the Hamiltonian is replaced with eiφS+
i S−

j + e−iφS−
i S+

j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = ⟨GS(φn)|GS(φn+1)⟩
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during
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FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
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sponse to the local spin twists extracts a local structure of
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can define a link-variable. Then each link has one of three
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closes. In order to calculate the Berry phase numerically,
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γN = −
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els

H =
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i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during
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FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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the Abelian Berry connection obtained by the single-
valued normalized ground state |GS(φ)⟩ of H(φ) as
A(φ) = ⟨GS(φ)|∂φ|GS(φ)⟩. This Berry phase is real
and quantized to 0 or π (mod 2π) if the Hamiltonian
H(φ) is invariant under the anti-unitary operation Θ,
i.e. [H(φ),Θ] = 0 [3]. Note that the Berry phase is
undefined if the gap between the ground state and the
excited states vanishes while varying the parameter φ.
We use a local spin twist on a link as a generic param-
eter in the definition of the Berry phase [1]. Under this
local spin twist, the following term S+

i S−
j + S−

i S+
j in

the Hamiltonian is replaced with eiφS+
i S−

j + e−iφS−
i S+

j ,
where S±

i = Sx
i ±iSy

i . The Berry phase defined by the re-
sponse to the local spin twists extracts a local structure of
the quantum system. By this quantized Berry phase, one
can define a link-variable. Then each link has one of three
labels: “0-bond”, “π-bond”, or “undefined”. It has a re-
markable property that the Berry phase has topological
robustness against the small perturbations unless the en-
ergy gap between the ground state and the excited states
closes. In order to calculate the Berry phase numerically,
we introduce a gauge-invariant Berry phase[1, 33]. It is
defined by discretizing the parameter space of φ into N
points as

γN = −
N∑

n=1

argA(φn), (1)

where A(φn) is defined by A(φn) = ⟨GS(φn)|GS(φn+1)⟩
φN+1 = φ1. We simply expect γ = limN→∞ γN .

First we consider S = 1, 2 dimerized Heisenberg mod-
els

H =
N/2∑

i=1

(J1S2i · S2i+1 + J2S2i+1 · S2i+2) (2)

where Si is the spin-1 or 2 operators on the i-th site and
N is the total number of sites. The periodic boundary
condition is imposed as SN+i = Si for all of the models
in this paper. J1 and J2 are parametrized as J1 = sinθ
and J2 = cosθ, respectively. We consider the case of
0 < θ < π/2 in this paper. The ground state is composed
of an ensemble of N/2 singlet pairs in limits of θ → 0
and θ → π/2. The system is equivalent to the isotropic
antiferromagnetic Heisenberg chain at θ = π/4. Based
on the VBS picture, we expect a reconstruction of the
valence bonds by chainging θ.

Figure. 1(a) and (b) show the θ dependence of the
Berry phase on the link with J1 coupling and J2 cou-
pling with S = 1, N = 14 and S = 2, N = 10, respec-
tively. The region with the Berry phase π is shown by
the bold line. There are several quantum phase transi-
sions characterized by the Berry phase as the topologi-
cal order parameters. The boundary of the two regions
with different Berry phases 0 and π does not have a well-
defined Berry phase, since the energy gap closes during
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FIG. 1: The Berry phases on the local link of (a) the S = 1
periodic N = 14 and (b) the S = 2 periodic N = 10 dimer-
ized Heisenberg chains, and (c) the S = 2 periodic N = 10
Heisenberg chain with single-ion anisotropy. The Berry phase
is π on the bold line while that is 0 on the other line. We la-
bel the region of the dimerized Heisenberg chains using the
set of two numbers as (n, m). The phase boundaries in the
finite size system are θc1 = 0.531237, θc2 = 0.287453 and
θc3 = 0.609305, respectively. The Berry phase in (a) and (b)
has an inversion symmetry with respect to θ = π/4.

the change of the local twist parameter φ. Since the
Berry phase is undefined at the boundaries, there exists
the level crossing which implies the existence of the gap-
less excitation in the thermodynamic limit. This result is
consistent with the previously discussed results[28], that
the general integer-S extended string order parameters
changes as the dimerization changes. The phase diagram
defined by our topological order parameter is consistent
with the one by the non-local string order parameter. In
an N = 10 system with S = 2, the phase boundaries are
θc2 = 0.287453, θc3 = 0.609305, and it is consistent with
the results obtained by using the level spectroscopy which
is based on conformal field theory techniques[34]. Espe-
cially in the one dimensional case, the energy diagram of
the system with twisted link is proportional to that of
the system with twisted boundary conditions. However,
our analysis focus on the quantum property of the wave
functions rather than the energy diagram.

As for the S = 2 Heisenberg model with D-term, we
use the Hamiltonian

H =
N∑

i

[
JSi · Si+1 + D (Sz

i )2
]
. (3)

Figure. 1(c) shows the Berry phase of the local link in
the S = 2 Heisenberg model + D-term with N=10. The
parameter J = 1 in our calculations. The region of the
bold line has the Berry phase π and the other region
has the vanishing Berry phase. This result also makes
us possible to consider the Berry phase as a local order
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parameter of the Haldane spin chains. Our numerical
results for finite size systems support the presence of the
intermediate D-phase [31].

Let us now interpret our numerical results in terms
of the VBS state picture. The VBS state is the exact
ground state of the Affleck-Kennedy-Lieb-Tasaki(AKLT)
model[35]. We shall calculate the Berry phase of the
generalized VBS state with the aid of the chiral AKLT
model[36] and its exact ground state wave function. The
chiral AKLT model is obtained by applying O(2) rotation
of spin operators in the original AKLT model. In our
calculation, it is convenient to introduce the Schwinger
boson representation of the spin operaors as S+

i = a†
i bi,

S−
i = aib

†
i , and Sz

i = (a†
iai − b†i bi)/2. ai and bi satisfy

the commutation relation [ai, a
†
j ] = [bi, b

†
j ] = δij with all

other commutators vanishing [37]. The constraint a†
iai +

b†i bi = 2S is imposed to reproduce the dimension of the
spin S Hilbert space at each site. In general, the ground
state of the chiral AKLT model having Bij valence bonds
on the link (ij) is written as

|{φi,j}⟩ =
∏

⟨ij⟩

(
eiφij/2a†

i b
†
j − e−iφij/2b†ia

†
j

)Bij

|vac⟩,(4)

[36]. This state has nonzero average of vector spin chiral-
ity ⟨Si ×Sj · ẑ⟩ unless the twist parameter φij = 0 or π.
This state is a zero-energy ground state of the following
Hamiltonian:

H({φi,i+1}) =
N∑

i=1

2Bi,i+1∑

J=Bi,i+1+1

AJP J
i,i+1[φi,i+1], (5)

where AJ is the arbitrary positive coefficient. P J
i,i+1[0]

is the polynomial in Si · Si+1 and act as a projection
operator projecting the bond spin J i,i+1 = Si + Si+1

onto the subspace of spin magnitude J . The replacement
S+

i S−
i+1 +S−

i S+
i+1 → eiφi,i+1S+

i S−
i+1 + e−iφi,i+1S−

i S+
i+1 in

Si · Si+1 produces P J
i,i+1[φi,i+1] in Eq. (5).

Now we shall explicitly show that the Berry phase of
the VBS state extracts the local number of the valence
bonds Bij as Bijπ(mod 2π). Let us now consider the
local twist of the parameters φij = φδij,12 and rewrite
the ground state |{φi,j}⟩ as |φ⟩. To calculate the Berry
phase of the VBS state, the following relation is useful:

iγ12 = iB12π + i

∫ 2π

0
Im[⟨φ|∂φ|φ⟩]/N (φ)dφ, (6)

where γ12 is the Berry phase of the bond (12) and
N (φ) = ⟨φ|φ⟩. Note that the first term of the right hand
side comes from the gauge fixing of the multi-valued wave
function to the single-valued function. Then, the only
thing to do is to evaluate the imaginary part of the con-
nection A(φ) = ⟨φ|∂φ|φ⟩.

Let us first consider the S = 1 VBS state as the sim-
plest example. In this case, Bi,i+1 = 1 for any bond and

the VBS state with a local twist is given by

|φ⟩ =
(
eiφ/2a†

1b
†
2 − e−iφ/2b†1a

†
2

) N∏

i=2

(
a†

i b
†
i+1 − b†ia

†
i+1

)
|vac⟩.

(7)
It is convenient to introduce the singlet creation operator
s† = (a†

1b
†
2 − b†1a

†
2) and the triplet (Jz = 0) creation

operator t† = (a†
1b

†
2 + b†1a

†
2). We can rewrite the bond

(12) part of the VBS state (eiφ/2a†
1b

†
2 − e−iφ/2b†1a

†
2)

as (cosφ
2 s† + isinφ

2 t†). Then ∂φ|φ⟩ can be written
as ∂φ|φ⟩ = (−1/2)sin(φ/2)|0⟩ + (i/2)cos(φ/2)|1⟩,
where |0⟩ and |1⟩ are s†

∏
(a†

i b
†
i+1 − b†ia

†
i+1)|vac⟩ and

t†
∏

(a†
i b

†
i+1 − b†ia

†
i+1)|vac⟩, respectively. It is now

obvious that the imaginary part of A(φ) vanishes
since the state |1⟩ having a total spin Stotal = 1 is
orthogonal to the state |0⟩ with Stotal = 0. Therefore,
the Berry phase of this state is given by γ12 = π.
Next we shall consider a more general situation with
arbitrary Bij . We can also express the VBS state
with a local twist on the bond (12) in terms of
s† and t† as |φ⟩ = (cosφ

2 s† + isinφ
2 t†)B12(· · · )|vac⟩,

where (· · · ) denotes the rest of the VBS state. By
using the binomial expansion, |φ⟩ can be rewritten
as |φ⟩ =

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k|k⟩,

where |k⟩ = (s†)B12−k(t†)k(· · · )|vac⟩ is the state with k
triplet bonds on the link (12). In a parallel way, ∂φ|φ⟩ =
(1/2)

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k(k cot(φ/2)−

(B12 − k) tan(φ/2))|k⟩. To see that the imaginary part
of the connection A(φ) is zero, we have to show that
Im⟨k|l⟩ = 0 when k and l have the same parity(even
or odd) and Re⟨k|l⟩ = 0 when k and l have different
parities. This can be easily shown by using the coherent
state representation of the Schwinger bosons [37]. Then
we can obtain the Berry phase as γ12 = B12π (mod 2π)
using the relation (6). This result means that the Berry
phase of the Haldane spin chains counts the number of
the edge states[8] which emerge when the spin chain
is truncated on the bond (12). Thus, it relates to the
property of the topological phase. Finally, it should be
stressed that our calculation of the Berry phase is not
restricted to one-dimensional VBS states but can be
generalized to the VBS state on a arbitrary graph as
long as there is a gap while varying the twist parameter.

Now, let us consider the previous two models in terms
of the VBS picture. For the S = 2 dimerized Heisen-
berg model, the number of the valence bonds changes
as the θ changes as Fig. 2. Since the number of the va-
lence bonds on a local link can be computed by the Berry
phase, we can clearly see that the reconstruction of the
valence bonds occurs during the change of the dimeriza-
tion. Thus, the result of the Berry phase is consistent
with the VBS picture. For the S = 2 Heisenberg chain
with single-ion anisotropy, the valence bonds are broken
one by one as D increases. We can see that the Berry
phase reflects the number of the local bonds as well as

3

parameter of the Haldane spin chains. Our numerical
results for finite size systems support the presence of the
intermediate D-phase [31].

Let us now interpret our numerical results in terms
of the VBS state picture. The VBS state is the exact
ground state of the Affleck-Kennedy-Lieb-Tasaki(AKLT)
model[35]. We shall calculate the Berry phase of the
generalized VBS state with the aid of the chiral AKLT
model[36] and its exact ground state wave function. The
chiral AKLT model is obtained by applying O(2) rotation
of spin operators in the original AKLT model. In our
calculation, it is convenient to introduce the Schwinger
boson representation of the spin operaors as S+

i = a†
i bi,

S−
i = aib

†
i , and Sz

i = (a†
iai − b†i bi)/2. ai and bi satisfy

the commutation relation [ai, a
†
j ] = [bi, b

†
j ] = δij with all

other commutators vanishing [37]. The constraint a†
iai +

b†i bi = 2S is imposed to reproduce the dimension of the
spin S Hilbert space at each site. In general, the ground
state of the chiral AKLT model having Bij valence bonds
on the link (ij) is written as

|{φi,j}⟩ =
∏

⟨ij⟩

(
eiφij/2a†

i b
†
j − e−iφij/2b†ia

†
j

)Bij

|vac⟩,(4)

[36]. This state has nonzero average of vector spin chiral-
ity ⟨Si ×Sj · ẑ⟩ unless the twist parameter φij = 0 or π.
This state is a zero-energy ground state of the following
Hamiltonian:

H({φi,i+1}) =
N∑

i=1

2Bi,i+1∑

J=Bi,i+1+1

AJP J
i,i+1[φi,i+1], (5)

where AJ is the arbitrary positive coefficient. P J
i,i+1[0]

is the polynomial in Si · Si+1 and act as a projection
operator projecting the bond spin J i,i+1 = Si + Si+1

onto the subspace of spin magnitude J . The replacement
S+

i S−
i+1 +S−

i S+
i+1 → eiφi,i+1S+

i S−
i+1 + e−iφi,i+1S−

i S+
i+1 in

Si · Si+1 produces P J
i,i+1[φi,i+1] in Eq. (5).

Now we shall explicitly show that the Berry phase of
the VBS state extracts the local number of the valence
bonds Bij as Bijπ(mod 2π). Let us now consider the
local twist of the parameters φij = φδij,12 and rewrite
the ground state |{φi,j}⟩ as |φ⟩. To calculate the Berry
phase of the VBS state, the following relation is useful:

iγ12 = iB12π + i

∫ 2π

0
Im[⟨φ|∂φ|φ⟩]/N (φ)dφ, (6)

where γ12 is the Berry phase of the bond (12) and
N (φ) = ⟨φ|φ⟩. Note that the first term of the right hand
side comes from the gauge fixing of the multi-valued wave
function to the single-valued function. Then, the only
thing to do is to evaluate the imaginary part of the con-
nection A(φ) = ⟨φ|∂φ|φ⟩.

Let us first consider the S = 1 VBS state as the sim-
plest example. In this case, Bi,i+1 = 1 for any bond and

the VBS state with a local twist is given by

|φ⟩ =
(
eiφ/2a†

1b
†
2 − e−iφ/2b†1a

†
2

) N∏

i=2

(
a†

i b
†
i+1 − b†ia

†
i+1

)
|vac⟩.

(7)
It is convenient to introduce the singlet creation operator
s† = (a†

1b
†
2 − b†1a

†
2) and the triplet (Jz = 0) creation

operator t† = (a†
1b

†
2 + b†1a

†
2). We can rewrite the bond

(12) part of the VBS state (eiφ/2a†
1b

†
2 − e−iφ/2b†1a

†
2)

as (cosφ
2 s† + isinφ

2 t†). Then ∂φ|φ⟩ can be written
as ∂φ|φ⟩ = (−1/2)sin(φ/2)|0⟩ + (i/2)cos(φ/2)|1⟩,
where |0⟩ and |1⟩ are s†

∏
(a†

i b
†
i+1 − b†ia

†
i+1)|vac⟩ and

t†
∏

(a†
i b

†
i+1 − b†ia

†
i+1)|vac⟩, respectively. It is now

obvious that the imaginary part of A(φ) vanishes
since the state |1⟩ having a total spin Stotal = 1 is
orthogonal to the state |0⟩ with Stotal = 0. Therefore,
the Berry phase of this state is given by γ12 = π.
Next we shall consider a more general situation with
arbitrary Bij . We can also express the VBS state
with a local twist on the bond (12) in terms of
s† and t† as |φ⟩ = (cosφ

2 s† + isinφ
2 t†)B12(· · · )|vac⟩,

where (· · · ) denotes the rest of the VBS state. By
using the binomial expansion, |φ⟩ can be rewritten
as |φ⟩ =

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k|k⟩,

where |k⟩ = (s†)B12−k(t†)k(· · · )|vac⟩ is the state with k
triplet bonds on the link (12). In a parallel way, ∂φ|φ⟩ =
(1/2)

∑B12
k=0

(B12
k

)
(cos(φ/2))B12−k(isin(φ/2))k(k cot(φ/2)−

(B12 − k) tan(φ/2))|k⟩. To see that the imaginary part
of the connection A(φ) is zero, we have to show that
Im⟨k|l⟩ = 0 when k and l have the same parity(even
or odd) and Re⟨k|l⟩ = 0 when k and l have different
parities. This can be easily shown by using the coherent
state representation of the Schwinger bosons [37]. Then
we can obtain the Berry phase as γ12 = B12π (mod 2π)
using the relation (6). This result means that the Berry
phase of the Haldane spin chains counts the number of
the edge states[8] which emerge when the spin chain
is truncated on the bond (12). Thus, it relates to the
property of the topological phase. Finally, it should be
stressed that our calculation of the Berry phase is not
restricted to one-dimensional VBS states but can be
generalized to the VBS state on a arbitrary graph as
long as there is a gap while varying the twist parameter.

Now, let us consider the previous two models in terms
of the VBS picture. For the S = 2 dimerized Heisen-
berg model, the number of the valence bonds changes
as the θ changes as Fig. 2. Since the number of the va-
lence bonds on a local link can be computed by the Berry
phase, we can clearly see that the reconstruction of the
valence bonds occurs during the change of the dimeriza-
tion. Thus, the result of the Berry phase is consistent
with the VBS picture. For the S = 2 Heisenberg chain
with single-ion anisotropy, the valence bonds are broken
one by one as D increases. We can see that the Berry
phase reflects the number of the local bonds as well as

Twist the link of the generic AKLT model

Berry phase on a link (ij)
�ij = Bij⇥ mod 2⇥

The Berry phase counts the number of the valence bonds!

S=1/2 objects are fundamental in integer spin chains

S=1/2

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431’08
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Orthogonal dimers
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Gapped to gapped transition
Dimer phase Plaquette singlet phase

A. Koga & N. Kawakami, Phys. Rev. Lett. 84, 4461 (2000)

H = J
X

hiji

Si · Sj + J 0
X

hiji

Si · Sj

J >> J 0
J ⇡ J 0

=

+



gauge twist for singlet pair

Ê

Ê
Ê
ÊÊÊ
ÊÊ
ÊÊ
ÊÊÊÊÊ
ÊÊÊ
ÊÊÊÊ
ÊÊÊ
ÊÊ
ÊÊ
ÊÊÊ
Ê
Ê

Ê

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

6

J �/J

� π

2π

0

0.661<J’/J<0.665

� : 0� : ⇥

Z2 Berry phase �D

�D �D

I. Maruyama, S. Tanaya, M.Arikawa & YH. , arXiv:1103.1226



⇥

⇥
⇥

⇥

⇥

⇥
⇥

⇥

������������ � �

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

6

�

J �/J

� : 0

gauge twist for plaquette singlet

� : ⇥

�P

�P �P

Z2 Berry phase

I. Maruyama, S. Tanaya, M.Arikawa & YH. , arXiv:1103.1226



Local Order Parameters of Bonds 
2D Extended SSH ( Su-Schrieffer-Heeger) Model

Strong Coupling Limit has a gapped unique ground state.

t’/t=0.0

Distribution of hoppings Vij = 0

Non-Abelian Connection 
          for the Fermi-Sea

Large System is

                available

YH, JPSJ. 73, 2604 (2004),
             74,  1374 (2005)



Local Order Parameters of Dimer Pairs 
2D Extended SSH ( Su-Schrieffer-Heeger) Model

Strong Coupling Limit has a gapped unique ground state.

t’/t=0.6

Distribution of the Quantized Berry Phases

�C = �
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Local Order Parameters of Dimer Pairs 
2D Extended SSH ( Su-Schrieffer-Heeger) Model

Strong Coupling Limit has a gapped unique ground state.

t’/t=0.7

Distribution of the Quantized Berry Phases

Quantum Phase Transition

  with (local) Gap Closing

Reconstruction of bonds



BEC-BCS crossover 
as a local quantum phase transition

spin up electrons

Switching on attractive interaction among particles

spin down electrons



BEC-BCS crossover 
as a local quantum phase transition



BEC-BCS crossover 
as a local quantum phase transition

Making bosons in real space 
then condense

Cooper pairing 
in momentum space 

BEC : strong coupling BCS : weak coupling

Crossover
adiabatically connected



strong coupling (BEC)weak coupling (BCS)

s-wave Gap

BCS Model at half filling
H = �t

X

�,i,j

c†i�cj� � |U |
X

ij

�ijci"ci#

crossover : gapped always

modify only at special (local) order parameter
to calculate the Berry phase  
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| i manybody state1D
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Crossover of the bulk 
by Quantum Phase transition with local gauge twist

Arikawa-Maruyama-YH, 2010


