

Dec. 10, 2008 at KITP

Bulk-Edge correspondence and Fractionalization

As a topological (spin) insulator with strong interaction

Y. Hatsugai

Institute of Physics Univ. of Tsukuba JAPAN

 $i\gamma_C(A_\psi) = \int_C A_\psi$

<u>Plan</u> With time reversal invariance

Entanglement Entropy to detect edge states

***** (effective) Description by the Edges :

 Fractionalization at the Edges in 1D deconfined spinons in 2D & 3D ??
 Time Reversal operators with interaction

 \Rightarrow Global to Local : super-selection rule $\Theta^2 = 1$, or -1Let us consider

> Gapped spin liquid as a topological insulator with strong interaction

Quantum Liquids without Symmetry Breaking

📽 Quantum Liquids in Low Dimensional Quantum Systems Low Dimensionality, Quantum Fluctuations **x** No Symmetry Breaking **Topological Order** X.G.Wen ☆ No Local Order Parameter Various Phases & Quantum Phase Transitions 📽 Gapped Quantum Liquids in Condensed Matter Integer & Fractional Quantum Hall States Dimer Models of Fermions and Spins Integer spin chains Valence bond solid (VBS) states ☆ Half filled Kondo Lattice

Quantum Liquids without Symmetry Breaking

📽 Quantum Liquids in Low Dimensional Quantum Systems Low Dimensionality, Quantum Fluctuations **x** No Symmetry Breaking **Topological Order** X.G.Wen ☆ No Local Order Parameter Various Phases & Quantum Phase Transitions Science Gapped Quantum Liquids in Condensed Matter Integer & Fractional Quantum Hall States Dimer Models of Fermions and Spins Integer spin chains Valence bond solid (VBS) states Half filled Kondo Lattice

How to understand gapped quantum liquids ?

classically featureless : need geometrical phase

classically featureless : need geometrical phase

1-st Chern number for QHE TKNN

Edge

classically featureless : need geometrical phase 1-st Chern number for QHE TKNN low energy localized modes in the gap

classically featureless : need geometrical phase 1-st Chern number for QHE TKNN low energy localized modes in the gap edge states for QHE Laughlin, Halperin, YH

Bulk

classically featureless : need geometrical phase 1-st Chern number for QHE TKNN low energy localized modes in the gap Edge edge states for QHE Laughlin, Halperin, YH

Bulk-Edge correspondence

Common property of topological ordered states

classically featureless : need geometrical phase

1-st Chern number for QHE TKNN

low energy localized modes in the gap

edge states for QHE Laughlin, Halperin, YH

Bulk-Edge correspondence

Common property of topological ordered states

classically featureless : need geometrical phase

1-st Chern number for QHE TKNN

low energy localized modes in the gap

edge states for QHE Laughlin, Halperin, YH

As for quantum spins

Z₂ Berry Phase as a Topological Order Parameter of bulk
 Entanglement Entropy to detect edge states (generic Kennedy triplet)

Quantum Liquid (Example 1) ☆The RVB state by Anderson

Singlet
$$\operatorname{Pair}_{12} \rangle = \frac{1}{\sqrt{2}} (|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle$$

$$|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Singlet Pair}_{ij}\rangle$$

small magnets

Local Singlet Pairs : (Basic Objects)

Quantum Liquid (Example 1) The **RVB** state by Anderson $|\text{Singlet Pair}_{12}\rangle = \frac{1}{\sqrt{2}}(|\uparrow_1\downarrow_2\rangle - |\downarrow_1\uparrow_2\rangle)$ $|G\rangle = \sum c_J \otimes_{ij} |\text{Singlet Pair}_{ij}\rangle$ J=Dimer Covering Spins disappear as a Singlet pair Local Singlet Pairs : (Basic Objects)

<u>Quantum Liquid (Example 2)</u> ☆The RVB state by Pauling

BC

 $|\text{Bond}_{12}\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) = \frac{1}{\sqrt{2}}(c_1^{\dagger} + c_2^{\dagger})|0\rangle$ $|G\rangle = \sum c_J \otimes_{ij} |\text{Bond}_{ij}\rangle$

Do Not use the Fermi Sea

J=Dimer Covering

localized charge at site A

Local Covalent Bonds : (Basic Objects)

Quantum Liquid (Example 2) The RVB state by Pauling

ond₁₂
$$\rangle = \frac{1}{\sqrt{2}}(|1\rangle + |2\rangle) = \frac{1}{\sqrt{2}}(c_1^{\dagger} + c_2^{\dagger})|0\rangle$$

 $|G\rangle = \sum_{J=\text{Dimer Covering}} c_J \otimes_{ij} |\text{Bond}_{ij}\rangle$ **Do Not use the Fermi Sea**

Delocalized charge as a covalent bond

Local Covalent Bonds : (Basic Objects)

Quantum Interference for the Classification

"Classical" Observables

"Quantum" Observables !

 $\begin{array}{ll} & \stackrel{}{\Rightarrow} \mbox{ Quantum Interferences:} & \langle G_1 | G_2 \rangle = \langle G_1' | G_2' \rangle e^{i(\phi_1 - \phi_2)} \\ & \stackrel{}{\Rightarrow} \mbox{ Probability Ampliture (overlap)} & |G_i \rangle = |G_i' \rangle e^{i\phi_i} \\ & \stackrel{}{\Rightarrow} \mbox{ Aharonov-Bohm Effects} \\ & \stackrel{}{\Rightarrow} \mbox{ Phase (Gauge) dependent} \\ & \langle G | G + dG \rangle = 1 + \langle G | dG \rangle & \hline A = \langle G | dG \rangle : \mbox{Berry Connection} \\ & i\gamma = \int A & :\mbox{Berry Phase} \end{array}$

Use Quantum Interferences To Classify Quantum Liquids

Z₂ Berry phases for gapped quantum spins

generic Heisenberg Models (with frustration)

$$H = \sum J_{ij} \boldsymbol{S}_i \cdot \boldsymbol{S}_j$$

ij Time Reversal Invariant

$$\Theta_N \boldsymbol{S}_i \Theta_N^{-1} = -\boldsymbol{S}_i$$
$$[H, \Theta_N] = 0$$

$$\Theta_N = (i\sigma_y^1) \otimes (i\sigma_y^2) \cdots (i\sigma_y^N) K$$
$$\Theta_N^2 = (-)^N$$

Mostly N: even $\Theta_N^2 = 1$ (probability 1/2 in HgTe)

Z₂ Berry phases for gapped quantum spins Define a many body hamiltonian by local twist as a parameter

Calculate the Berry Phases using the Entire Many Spin Wavefunction numerically

Require excitation Gap!

$$\underline{Z_2 \text{ quantization}}$$
 $\gamma_C = \int_C A_{\psi} = \int_C \langle \psi | d\psi \rangle = \begin{cases} 0 \\ \pi \end{cases} : \mod 2\pi \quad \mathbb{Z}_2$
Time Reversal (Anti-Unitary) Invariance

Berry Connection and Gauge Transformation \Rightarrow Parameter Dependent Hamiltonian $H(x) = E(x) \psi(x) = E(x) \psi(x)$ $H(x)|\psi(x)\rangle = E(x)|\psi(x)\rangle, \langle \psi(x)|\psi(x)\rangle = 1.$ $\Rightarrow \textbf{Berry Connections} \quad A_{\psi} = \langle \psi | d\psi \rangle = \langle \psi | \frac{d}{dx} \psi \rangle dx.$ $\Rightarrow \textbf{Berry Phases} \quad i\gamma_C(A_{\psi}) = \int_C A_{\psi}$ $\Rightarrow Phase Ambiguity of the eigen state$ $|\psi(x)\rangle = |\psi'(x)\rangle e^{i\Omega(x)}$ (Abelian) **Gauge Transformation** $A_{\psi} = A'_{\psi} + id\Omega = A'_{\psi} + i\frac{d\Omega}{dx}dx$ Serry phases are not well-defined without $\gamma_C(A_{\psi}) = \gamma_C(A_{\psi'}) + \int_C d\Omega \qquad \text{specifying the gauge} \\ 2\pi \times (\text{integer}) \text{ if } e^{i\Omega} \text{ is single valued}$ \approx Well Defined up to mod 2π

 $\gamma_C(A_\psi) \equiv \gamma_C(A_{\psi'}) \mod 2\pi$

Anti-Unitary Operator and Berry Phases

Anti-Unitary Operator (Time Reversal, Particle-Hole) $\Theta = KU_{\Theta}, \quad \begin{array}{c} K: & \text{Complex conjugate} \\ U_{\Theta}: & \text{Unitary} \end{array}$ (parameter independent) $|\Psi\rangle = \sum C_J |J\rangle$ $\sum C_J^* C_J = \langle \Psi | \Psi \rangle = 1$ $|\Psi^{\Theta}\rangle = \overset{J}{\Theta}|\Psi\rangle = \sum C_{J}^{*}|J^{\Theta}\rangle, \quad |J^{\Theta}\rangle = \Theta|J\rangle$ Serry Phases and Anti-Unitary Operation $A^{\Psi} = \langle \Psi | d\Psi \rangle = \sum_{I} C_{J}^{*} dC_{J} \qquad \sum dC_{J}^{*} C_{J} + \sum C_{J}^{*} dC_{J} = 0$ $A^{\Theta\Psi} = \langle \Psi^{\Theta} | d\Psi^{\Theta} \rangle = \sum C_J dC_J^* = -A^{\Psi}$ $\gamma_C(A^{\Theta\Psi}) = -\gamma_C(A^{\Psi})$

 $\gamma_C(A^{\Psi}) = -\gamma_C(A^{\Theta\Psi}) \equiv -\gamma_C(A^{\Psi}), \ \mathrm{mod}2\pi$

Numerical Evaluation of the Berry Phases (incl. non-Abelian) (1) Discretize the periodic parameter space $\begin{aligned} x_0, x_1, \cdots, x_N &= x_0 & \theta_0 = 0, \ \theta_N = 2\pi \\ x_n &= e^{i\theta_n} & \theta_{n+1} = \theta_n + \Delta \theta_n & \forall \Delta \theta_n \to 0 \end{aligned}$ (2) Obtain eigen vectors $H(x_n)|\psi_n^i\rangle = E^i(x_n)|\psi_n^i\rangle$ (3) Define Berry connection in a discretized form ? = non-Abelian $A_n = \operatorname{Im} \log \det D_n, \ \{D_n\}_{ij} = \langle \psi_n^i | \psi_{n+1}^j \rangle$

(4) Evaluate the Berry phase $D_n, \{D_n\}_{ij} = \langle \psi \rangle$

 $\gamma = \sum_{n=0}^{N-1} A_n = \operatorname{Im} \log \langle \psi_0 | \psi_1 \rangle \langle \psi_1 | \psi \rangle \cdots (= \operatorname{Im} \log \det D_1 D_2 \cdots D_n)$

Independent of the choice of the phase $|\psi_n
angle
ightarrow |\psi_n
angle
ightarrow |\psi_n
angle
ightarrow e^{i\Omega_n}$

Gauge invariant

after the discretization Convenient for Numerics Luscher '82 (Lattice Gauge Theory) King-Smith & Vanderbilt '93 (polarization in solids) T. Fukui, H. Suzuki & YH '05 (Chern numbers)

Adiabatic Continuation & the Quantization

☆Z₂-quantization of the Berry phases protects from continuous change

Adiabatic Continuation in a gapped system

Renormalization Group in a gapless system

Local Order Parameters of Singlet Pairs \$\approx 1D AF-AF, AF-F Dimers Y.H., J. Phys. Soc. Jpn. 75 123601 (2006)

Strong Coupling Limit of the AF Dimer link is a gapped unique ground state.

Local Order Parameters of the Haldane Phase Heisenberg Spin Chains with integer S × No Symmetry Breaking by the Local Order Parameter String Order": Non-Local Order Parameter! **S=1** $(S_i)^2 = S(S+1), S = 1$ $H = J \sum S_i \cdot S_j + D \sum (S_i^z)^2$ *i* Y.H., J. Phys. Soc. Jpn. 75 123601 (2006) $\langle ij \rangle$ π π π π π π π π π $D < D_C$ 0 0 0 0 0 0 $D > D_C$

Describe the Quantum Phase Transition locally

c.f. S=1/2, 1D dimers, 2D with Frustrations, Ladders t-J with Spin gap

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08 S=1,2 dimerized Heisenberg model $H = \sum_{i=1}^{N/2} (J_1 S_{2i} \cdot S_{2i+1} + J_2 S_{2i+1} \cdot S_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$ Z2Berry phase

0 0 0 0 0 0

D

Topological Quantum Phase Transitions with translation invariance

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08 * S=1,2 dimerized Heisenberg model $H = \sum_{i=1}^{N/2} (J_1 S_{2i} \cdot S_{2i+1} + J_2 S_{2i+1} \cdot S_{2i+2}) \quad J_1 = \cos \theta, J_2 = \sin \theta$ Z2Berry phase

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08

• S=2 Heisenberg model with D-term

$$H = \sum_{i=1}^{N} \left[JS_i \cdot S_{i+1} + D\left(S_i^z\right)^2 \right]$$
Z2Berry phase Red line denotes the non-trivial

Red line denotes the non trivial Berry phase

Reconstruction of valence bonds!

Topological Classification of Generic AKLT (VBS) models

T.Hirano, H.Katsura &YH, Phys.Rev.B77 094431'08 Twist the link of the generic AKLT model

$$H(\{\phi_{i,i+1}\}) = \sum_{i=1}^{N} \sum_{J=B_{i,i+1}+1}^{2B_{i,i+1}} A_{J} P_{i,i+1}^{J} [\phi_{i,i+1}]$$

$$|\{\phi_{i,j}\}\rangle = \prod_{\langle ij \rangle} \left(e^{i\phi_{ij}/2} a_{i}^{\dagger} b_{j}^{\dagger} - e^{-i\phi_{ij}/2} b_{i}^{\dagger} a_{j}^{\dagger} \right)^{B_{ij}} |\text{vac}\rangle$$

$$\frac{\text{Berry phase on a link (ij)}}{\gamma_{ij} = B_{ij} \pi \mod 2\pi} \qquad S=1/2$$

The Berry phase counts the number of the <u>valence</u> bonds!

S=1/2 objects are fundamental in S=1&2 spin chains

Contribute to the Entanglement Entropy as of Edge states

Y.H., J. Phys. Soc. Jpn. 75 123601 (2006), J. Phys. Cond. Matt. 19, 145209 (2007)

Entanglement Entropy to detect edge states direct calculation of spectrum with bondaries

A How much the State is Entangled between A & B? Entanglement Entropy : $S_A = -\langle \log \rho_A \rangle = \log D$

E.E. & Edge states (Gapped) (of spins, fermions...)

A B

Partial Trace induces effective edge states

🕸 Requirement: Finite Energy Gap for the Bulk

* The effective edge states contribute to the E.E.

 \approx Let us assume that the edge states has degrees of freedom D_E

Entanglement Entropy > (# edge states) Log D_E

S. Ryu & YH, Phys. Rev. B73, 245115 (2006) (Fermions)

EE of the Generic VBS States (S=1,2,3,...)

H. Katsura, T.Hirano & YH, Phys. Rev. B76, 012401 (2007)
T.Hirano & YH, J. Phys. Soc. Jpn. 76, 113601 (2007)

$$H_{VBS} = \sum_{i=1}^{N} \vec{S}_i \cdot \vec{S}_{i+1} + \alpha H_{extra}^S, \quad \vec{S}_i^2 = S(S+1)$$

 $H_{extra}^{S=1} = \sum_i \frac{1}{3} (\vec{S}_i \cdot \vec{S}_{i+1})^2$
 $H_{extra}^{S=2} = \sum_i \left(\frac{2}{9} (\vec{S}_i \cdot \vec{S}_{i+1})^2 + \frac{1}{63} (\vec{S}_i \cdot \vec{S}_{i+1})^3 + \frac{1}{63} (\vec{S}_i \cdot \vec{S}_{i+1})^3$
 $S_L = -\langle \log \rho \rangle_\rho \rightarrow 2 \log(S+1), \quad (L \rightarrow \infty)$
Boundary Spins: S/2
 $I = 2 \log 2$ Setf=1/2 2²=4
 $2 = 2 \log 3$ Setf=1 3²=9
S = 2 \log (S+1) Setf=S/2 (S+1)²
 $Fractionalization : Emergent as edge states$

(Quantum Resources for qbits)

Adiabatic deformation

I. Maruyama, T. Hirano, YH, arXiv:0806.4416 Vector chirality phase

Berry phase remains the same Topologically equivalence

Energy spectrum with boundaries (diagonal)

M. Arikawa, S. Tanaya, I. Maruyama, YH, unpublished

S=1/2 is always fundamental (electron spin)

Global TR Θ_N Local (edge) TR Θ_L , Θ_R

Thank you